A Weighted Particle Filter For Pedestrian Tracking in Complex Scenarios[J]. JOURNAL OF SIGNAL PROCESSING, 2017, 33(7): 934-942.
Citation: A Weighted Particle Filter For Pedestrian Tracking in Complex Scenarios[J]. JOURNAL OF SIGNAL PROCESSING, 2017, 33(7): 934-942.

A Weighted Particle Filter For Pedestrian Tracking in Complex Scenarios

More Information
  • Received Date: December 07, 2016
  • Revised Date: March 19, 2017
  • Published Date: July 24, 2017
  • Focusing on the problem that traditional particle filter tracking algorithm prone to drift and tracking accuracy is unsatisfactory when there is some interference from shading on the target, the light or which background is similar to the pedestrian, a weighted particle filter for pedestrian tracking method is proposed. This method combines occlusion model and Online Boosting algorithm to reconstruct the particle weights, using online learning update strong classifiers in real time, meanwhile, combined with several impact factors, such as occlusion model, the distance and the similarity between last time target location and current location, to realize pedestrian adaptive tracking in the complex scenarios. Experiment results on PETS - L2S1 public data and my own data set show that the proposed method can effectively remove the interference from object shelter, similar backgrounds and light mutation, the weighted particle filter method could accomplish pedestrian tracking stably, accurately and in real time.
  • [1]
    Hu Yang, Liao Shengcai, Lei Zhen, et al.Exploring structural information and fusing multiple features for person re‐identification[C]//Proc of the 2013 Conf on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ: IEEE, 2013:794-799.
    [2]
    陈普强, 郭立君, 张荣, 等, 基于全局空间约束块匹配的目标人体识别[D].计算机研究与发展, 2015, 52(3):596-605.Chen Puqiang, Guo Lijun, Zhang Rong, et al, Patch Matching with Global Spatial Constraints for person Re- Identification[J].Journal of Computer Research and Development, 2015, 52(3):596-605. (in Chinese)
    [3]
    冯星辰, 阮秋琦, .行人跟踪的多特征融合算法研究[J].信号处理, 2016, 32(11):1308-1317
    [4]
    王海环, 王俊, 基于改进概率假设密度的多目标跟踪算法.电波科学学报[J].Journal of Radio Science, 2016, 31(1):53-60
    [5]
    Sezgin, B. Sankur. .Survey over image thresholding techniques and quantitative performance evaluation.[J].Journal of Electronic Imaging, 2004, 13(1):146-165
    [6]
    P.Viola, M. Jones. Rapid object detection using a boosted cascade of simple features[C]//Computer Vision and Pattern Recognition, Hawaii, 2001, 1. 511-518.
    [7]
    王法胜, 鲁明羽, 赵清杰, 等, 粒子滤波算法.计算机学报[J].Chinese Journal of Computers, 2014, 37(8):1679-1694
    [8]
    刘鹏威.基于运动补偿与RJ-MCMC结合的视频目标跟踪研究[D]. 济南: 山东大学, 2010.Liu Pengwei.Targets tracking based on joint algorithm of motion compensation and RJ-MCMC in video sequence[D]. Ji Nan: Shandong University, 2010. (in Chinese)
    [9]
    K.PearsonOn lines and Planes of closest fit to systems of Point in space[J].PhilosoPhical Magazine, 1901, 2(6):559-572
    [10]
    H.Grabner, H. Bischof. Online boosting and vision[C]//In Proc. CVPR, 2006, 1. 260-267.
    [11]
    DONG Huiying, CAO Bin, YANG Yueping.Application of particle filter for target tracking in wireless sensor networks[C]//International Conference on Communications and Mobile Computing, 2010: 504-508.
    [12]
    吴瑕, 陈建文, 等, 混合估计多模粒子滤波的机动弱目标检测前跟踪算法.控制与决策[J].Control and Decision, 2014, 29(3):523-527
    [13]
    N.Oza and S. Russell.. Experimental comparisons of online and batch versions of bagging and boosting.[J].In Proc. 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001
    [14]
    D.M. Gavrila,SMunderMulti-cue pedestrian detection and tracking from a moving vehicle[J].International Journal of Computer Vision, 2007, 73(1):41-59
    [15]
    H.Nagel,WEnkelmannAn investigation of smoothness constraints for the estimation of displacement vector field from image sequences[J].IEEE Trans. on Pattern Analyze and Machine Intelligence, 1986, 8(5):565-593
    [16]
    S.Walk, N. Majer, K. Schindler, B. Schiele. New features and insights for pedestrian detection[C]//CVPR 2010, 1030-1037.
  • Related Articles

    [1]Liu Chao, Wang Zi-wei, Sun Jin-ping. Particle Flow Particle Filter Track-Before-Detect Method[J]. JOURNAL OF SIGNAL PROCESSING, 2019, 35(3): 342-350. DOI: 10.16798/j.issn.1003-0530.2019.03.004
    [2]WANG Na, TAN Shun-cheng, WANG Guo-hong. Multitarget Particle Filter Track-before-detect Algorithm with Unknown Target Number[J]. JOURNAL OF SIGNAL PROCESSING, 2017, 33(9): 1248-1257. DOI: 10.16798/j.issn.1003-0530.2017.09.012
    [3]LIU Chao, LI Xiu-You, HUANG Yong. Optimized Multiple Model Particle Filter Track-Before-Detect Algorithm for Maneuvering Weak Target[J]. JOURNAL OF SIGNAL PROCESSING, 2015, 31(9): 1131-1137.
    [4]LU Jin, SU Hong-Tao, SHUI Peng-Lang. Particle Filter based Non-coherent Integration Method for Detection[J]. JOURNAL OF SIGNAL PROCESSING, 2015, 31(6): 652-659.
    [5]SUN Hai-Fei, JIANG Hua. Particle Filtering Blind Equalization Method in Nonlinear Satellite Channel[J]. JOURNAL OF SIGNAL PROCESSING, 2015, 31(5): 587-593.
    [6]SONG De-Shu, LIANG Guo-Long, WANG Yan. Particle Filter Algorithm for DOA Tracking of Maneuvering Targets[J]. JOURNAL OF SIGNAL PROCESSING, 2014, 30(7): 861-866.
    [7]ZHOU Hang, FENG Xin-Xi, WANG Rong. Improvement Particle Filtering Algorithm for Nonlinear Non-Gaussian models[J]. JOURNAL OF SIGNAL PROCESSING, 2012, 28(9): 1327-1334.
    [8]LONG Jian-Qian, YANG Wei, FU Yao-Wen. Multi-target Tracking Based on Improved Particle PHD Filter[J]. JOURNAL OF SIGNAL PROCESSING, 2011, 27(9): 1296-1300.
    [9]PEI Li-Zhi, WANG Run-Sheng. Particle Filter Tracker Based on ICA Distribution Models[J]. JOURNAL OF SIGNAL PROCESSING, 2010, 26(11): 1621-1626.
    [10]WAN Yang, WANG Shou-Yong, YU Xin-Wei. A Extended H Particle Filter Algorithm[J]. JOURNAL OF SIGNAL PROCESSING, 2010, 26(6): 869-874.
  • Cited by

    Periodical cited type(2)

    1. 麦超云,刘子明,黄传好,翟懿奎,王占. 基于多频带陷波的雷达嵌入式通信波形设计. 信号处理. 2022(05): 1019-1026 . 本站查看
    2. 洪升,付勇强,李铭晖,张妤歆. 基于CIA的雷达互补稀疏频率序列集设计. 雷达科学与技术. 2022(06): 606-613+622 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (75) PDF downloads (7) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return