结合ICA和复数神经网络的二麦阵列盲源分离技术

Blind Source Separation Of Binary Array Using ICA And Complex Neural Network

  • 摘要: 为了降低语音信号盲源分离算法的延时,提高其准确性和稳定性,本文结合传统盲源分离技术和深度神经网络的优势,提出了一种基于ICA独立分量分析和复数神经网络的二麦阵列盲源分离技术。本文将复数递归神经网络和独立分量分析方法有机融合,提出一种基于时频域的双通道复数神经网络,同时解决了独立分量分析中的排列问题。所提方法利输入混合信号利用复数域神经网络计算初始化分离矩阵,神经网络输出采用复数域形式,利用复数学习标签估计复数矩阵,然后采用独立分量分析方法获得目标分离矩阵。实验数据表明,所提方法相较于其它独立分量分析方法提高了盲源分离的实时性和准确性。

     

    Abstract: To reduce the delay of blind source separation (BSS) algorithm and improve its accuracy and stability, combining the advantages of traditional BSS technology and deep neural network, this paper proposes a binary array BSS technology based on independent component analysis (ICA) and complex neural network. A dual channel complex neural network based on time-frequency domain is proposed. Meanwhile the permutation problem in ICA is solved. The complex domain neural network is used to initialize the separation matrix based on the input mixed signal, the output of the neural network is in complex domain, the complex matrix is estimated by the learning label, and the target separation matrix is obtained by ICA. Compared with other independent component analysis methods, the proposed method improves the real-time performance and accuracy of blind source separation.

     

/

返回文章
返回