基于欧拉旋转和极化投影的共形阵列建模方法

孙仕礼, 刘帅, 金铭

孙仕礼, 刘帅, 金铭. 基于欧拉旋转和极化投影的共形阵列建模方法[J]. 信号处理, 2021, 37(8): 1430-1440. DOI: 10.16798/j.issn.1003-0530.2021.08.010
引用本文: 孙仕礼, 刘帅, 金铭. 基于欧拉旋转和极化投影的共形阵列建模方法[J]. 信号处理, 2021, 37(8): 1430-1440. DOI: 10.16798/j.issn.1003-0530.2021.08.010
SUN Shili, LIU Shuai, JIN Ming. Conformal array modeling method based on Euler rotation and polarization projection[J]. JOURNAL OF SIGNAL PROCESSING, 2021, 37(8): 1430-1440. DOI: 10.16798/j.issn.1003-0530.2021.08.010
Citation: SUN Shili, LIU Shuai, JIN Ming. Conformal array modeling method based on Euler rotation and polarization projection[J]. JOURNAL OF SIGNAL PROCESSING, 2021, 37(8): 1430-1440. DOI: 10.16798/j.issn.1003-0530.2021.08.010

基于欧拉旋转和极化投影的共形阵列建模方法

基金项目: 国家自然科学基金(62071144)
详细信息
  • 中图分类号: TN911.7

Conformal array modeling method based on Euler rotation and polarization projection

  • 摘要: 共形阵列建模是共形阵列方向图综合优化、信号处理等研究工作的基础。与传统极化敏感阵列不同,受共形载体曲率影响,共形天线单元呈现多极化特性,共形阵列建模不仅要考虑空域导向矢量,还应考虑入射信号极化矢量在阵元极化方向图上的投影,这也是共形阵列建模的重点和难点。针对该问题,本文在利用欧拉旋转得到阵元局部方向图表示的基础上,给出了入射信号极化矢量在全局和局部坐标系下向阵元极化方向图极化投影的三种方法,完善了共形阵列建模理论,分析了不同建模方法的复杂度,并利用全局坐标系极化投影方法将广义信号子空间拟合算法应用于共形阵列。仿真结果表明,本文方法与全局极坐标系极化投影方法得到的共形阵列模型具有一致性,且不同建模方法对不同应用场景具有各自的适用性。
    Abstract: Conformal array modeling was the basis of researches on conformal array pattern optimization and signal processing. Unlike traditional polarization-sensitive arrays, conformal antenna elements exhibited multi-polarization characteristics due to the curvature of the conformal carrier. In the process of conformal array modeling, not only the spatial steering vector should be considered, but also the polarization vector of the incident signal should be considered at the pole of the array element. This is the focus and difficulty of conformal array modeling. This paper presented three methods for polarization projecting the polarization vector of the incident signal to the polarization pattern of the array element in the global and local coordinate systems by Euler rotation and the modeling theory of conformal array was improved. Then, the complexity of different methods is analyzed, and the generalized signal subspace fitting algorithm is applied to conformal array by global coordinate system polarization projection method. The simulation results show that the method in this paper is consistent with the conformal array model obtained by the polarization projection method of the global polar coordinate system, which verifies the effectiveness of the method, and different methods have their own applicability in different scenarios.
  • [1] Josefsson L, Persson P. Conformal array antenna theory and design[M]. Canada: Wiley-IEEE Press,2006.
    [2] Liu Dali, Li Lei, Chen Xinhong.Pattern synthesis of a practical conformal hydrophone array via second-order cone programming[J].Cluster Computing, 2019, 22:8379-8386.
    [3] Yu Xiaomeng, Zhang Yan, Dong Tao, et al. A novel and efficient synthesis approach on antenna radiation pattern for conformal array[C]. 2016 IEEE International Conference On Communication Systems (ICCS). 2016.1-4.
    [4] Lu Yiling, Xiang Yin, Zhao Yikun, et al. Fast Digital Beamforming for Conformal Array[C]. 2019 IEEE International Conference On Signal, Information And Data Processing (ICSIDP). 2019.1-4.
    [5] Wang Zhanze, Sun Yuze, Li Shuai, et al.Null widening method for conformal array based on covariance matrix enhancement[J].The Journal Of Engineering, 2019, 2019(60): 6390-6393.
    [6] 刘帅,周洪娟,金铭,等.锥面共形阵列天线的极化-DOA估计[J].系统工程与电子技术,2012,34(02):253-257.
    [7] Liu Shuai, Zhou Hongjuan, Jin Ming, et al.Polarization-DOA estimation for conical conformal array antennas[J].Systems Engineering And Electronics, 2012, 34(02):253-257. (in Chinese)
    [8] 周义建, 王布宏, 齐子森, 等.柱面共形阵列天线WSF算法DOA估计性能分析[J].空军工程大学学报(自然科学版), 2008, (04):74-78.
    [9] Zhou Yijian, Wang Buhong, Qi Zisen, et al.Performance Analysis of WSF Algorithm DOA Estimation of Cylindrical Confomal Array Antenna[J].Journal Of Air Force Engineering University (Natural Science Edtion), 2008, (04):74-78. (in Chinese)
    [10] 刘帅,韩勇,闫锋刚,等.锥面共形阵列极化-DOA估计的降维MUSIC算法[J].哈尔滨工业大学学报,2017,49(05):36-41.
    [11] Liu Shuai, Han Yong, Yan Fenggang, et al.Polarization-DOA estimation for conical conformal array based on dimension reduced MUSIC[J].Journal Of Harbin Institute Of Technology, 2017, 49(05):36-41. (in Chinese)
    [12] Lan Xiaoyu, Wang Lening, Wang Yupeng, et al.Tensor 2-D DOA Estimation for a Cylindrical Conformal Antenna Array in a Massive MIMO System Under Unknown Mutual Coupling[J].IEEE Access, 2018, 6:7864-7871.
    [13] 张羚, 郭英, 邹峰, 等.锥面共形阵列非圆信号2D-DOA估计[J].系统工程与电子技术,2018,40(05):989-996.
    [14] Zhang Ling, Guo Ying, Zou Feng, et al.2D-DOA estimation on conical conformal array antennas for non-circular signals[J].Systems Engineering And Electronics, 2018, 40(05):989-996. (in Chinese)
    [15] Yang Jian, Chen Tao, Shi Lin, et al. Joint DOA and Polarization Estimation Based on Multi-polarization Sensitive Array[C].6th International Conference On Communications, Signal Processing, And Systems (ICCSPS).2019.2694-2701.
    [16] 王布宏, 郭英, 王永良, 等.共形天线阵列流形的建模方法[J].电子学报, 2009, 37(03):481-484.
    [17] Wang Buhong, Guo Ying, Wang Yongliang, et al.Array Manifold Modeling for Conformal Array Antenna [J].ACTA ELECTRONICA SINICA, 2009, 37(03):481-484. (in Chinese)
    [18] Burger H A.Use of Euler-Rotation angles for generating antenna patterns[J].IEEE Antennas And Propagation Magazine, 1995, 37(2):56-63.
    [19] Miligan T.More applications of Euler rotation angles[J].IEEE Antennas And Propagation Magazine, 1999, 41(4):78-83.
  • 期刊类型引用(1)

    1. 陈卓琳,胡星星,滕云田,刘高川. 大动态范围磁通门磁力仪及其在定向误差校正中的应用. 仪器仪表学报. 2024(01): 81-89 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  160
  • HTML全文浏览量:  15
  • PDF下载量:  111
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-02-02
  • 修回日期:  2021-04-24
  • 发布日期:  2021-08-24

目录

    /

    返回文章
    返回