基于知识迁移和注意力融合的方面级文本情感分析

Aspect-level Sentiment Analysis Based on Knowledge Transfer and Attention Fusion

  • 摘要: 方面级情感分析是针对一个评论中涉及多种方面类别时的情感分析,现有方法通常利用方面级数据集在神经网络模型上直接进行训练,但已标注的方面级训练数据规模较小,造成模型不能充分学习而性能受限。为解决上述问题,本文利用迁移学习的思想,将数据量较大的文档级数据进行情感分析模型的预训练,进而获得丰富的文本语义、句法信息和情感特征,然后通过本文设计的目标函数及注意力融合方法,将文档级情感分析模型中的注意力权重融合到方面级情感分析模型中,从而使方面级文本情感分析性能提升。将该模型在SemEval2014数据集上进行实验,实验结果中的准确率和F1值均高于对比模型,证明了本文模型的有效性。

     

    Abstract: Aspect-level sentiment analysis aims to judge the sentiment polarity when a comment involves multiple aspects. Existing methods usually use aspect-level datasets to train neural network models directly, but the labeled aspect level training datasets are small, which make the model unable to fully learn and limit the performance of the model. In order to solve the problem, this paper uses the idea of transfer learning to pre-train the sentiment analysis model with large amount of document-level datasets, so as to obtain more text semantic, syntactic information and emotional features. Then, through the objective function and attention fusion method designed in this paper, the attention weight in the document-level sentiment analysis model is integrated into aspect-level sentiment analysis, so that the performance of aspect level sentiment analysis can be improved by knowledge transfer and attention fusion. The model was tested on SemEval2014 dataset, and the accuracy and F1 value of the experimental results are higher than those of the comparison model, which proves the effectiveness of the model.

     

/

返回文章
返回