[1] |
Board U. Vehicle-and Infrastructure-based Technology for the Prevention of Rear-end Collisions, ser[J]. Special investigation report. National Transportation Safety Board, 2001.
|
[2] |
Pan W , Lucas C , Tasmia R , et al. LiDAR and Camera Detection Fusion in a Real Time Industrial Multi-Sensor Collision Avoidance System[J]. Electronics, 2018, 7(6):84-.
|
[3] |
Sotelo M á, Barriga J. Blind spot detection using vision for automotive applications[J]. Journal of Zhejiang University-Science A, 2008, 9(10): 1369-1372.
|
[4] |
Ra M , Jung H G , Suhr J K , et al. Part-based Vehicle Detection in Side-rectilinear Images for Blind-Spot Detection[J]. Expert Systems with Applications,2018:S0957417418300757.
|
[5] |
Zhao, Yiming, Bai, et al. Camera-Based Blind Spot Detection with a General Purpose Lightweight Neural Network[J]. Electronics, 2019.
|
[6] |
Ba Y, Zhang W, Wang Q, et al. Crash prediction with behavioral and physiological features for advanced vehicle collision avoidance system[J]. Transportation Research Part C: Emerging Technologies, 2017, 74: 22-33.
|
[7] |
Zhuang J, Zhang L, Zhao S, et al. Radar-based collision avoidance for unmanned surface vehicles[J]. China Ocean Engineering, 2016, 30(6): 867-883.
|
[8] |
Liu G , Zhou M , Wang L , et al. A blind spot detection and warning system based on millimeter wave radar for driver assistance[J]. Optik - International Journal for Light and Electron Optics, 2017, 135:353-365.
|
[9] |
王敏, 周树道, 彭文星,等. 基于超声波传感器的汽车盲区检测系统研究[J]. 自动化技术与应用, 2017(3).
|
[10] |
Wang Min, Zhou Shudao, Peng Wenxing, et al. Research on Vehicle Blind Spot Detection System Based on Ultrasonic Sensor[J]. Automation Technology and Application, 2017(3). (in Chinese)
|
[11] |
杨思思. 基于单目视觉的车辆盲区预警系统的研究及实现[D]. 2015.
|
[12] |
Yang Sisi. Vehicle Blind Spot Warning Algorithm Research and Svstem Design based on Monocular Vision[D]. 2015. (in Chinese)
|
[13] |
DALAL,N. Histograms of oriented gradients for human detection[J]. Proc of Cvpr, 2005.
|
[14] |
Dollár P, Tu Z, Perona P, et al. Integral channel features[J]. 2009.
|
[15] |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C], Advances in neural information processing systems. 2012: 1097-1105.
|
[16] |
Girshick R. Fast r-cnn[C], Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
|
[17] |
Redmon J , Divvala S , Girshick R , et al. You Only Look Once: Unified, Real-Time Object Detection[J]. 2015.
|
[18] |
Law H, Deng J. Cornernet: Detecting objects as paired keypoints[C], Proceedings of the European Conference on Computer Vision (ECCV). 2018: 734-750.
|
[19] |
Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
|
[20] |
Zhang H, Cisse M, Dauphin Y N, et al. mixup: Beyond empirical risk minimization[J]. arXiv preprint arXiv:1710.09412, 2017.
|
[21] |
Yun S, Han D, Oh S J, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 6023-6032.
|
[22] |
Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal Speed and Accuracy of Object Detection[J]. arXiv preprint arXiv:2004.10934, 2020.
|
[23] |
Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 658-666.
|
[24] |
Huang X, Cheng X, Geng Q, et al. The apolloscape dataset for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018: 954-960.
|
[25] |
Yu F, Chen H, Wang X, et al. BDD100K: A diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 2636-2645.
|