基于行为模式的海上目标轨迹分段算法

Trajectory Segmentation Algorithm Based on Behavior Pattern

  • 摘要: 海上目标监视系统实时获取并长期积累了大量轨迹数据,深入挖掘分析其中蕴含的目标行为特征,是提升传统的基于声光电磁特性的海上目标探测技术性能的重要途径。在轨迹聚类、轨迹预测和行为分析等数据挖掘的预处理环节中,主流的轨迹分段算法以最小化损失为分段依据,没有给分段轨迹赋予行为模式等语义内涵,限制了分段轨迹的应用范围。对此,本文提出一种基于行为模式的海上目标轨迹分段算法,通过定义七种目标行为模式,制定行为模式优先级,达到轨迹分段的目的。通过提取轨迹段的特征值,真实的保留轨迹特征,尽可能的还原轨迹。实验分析表明,本文的算法能准确合理的进行轨迹分段并真实的还原轨迹,不同的算法参数对应不同的应用场景。最终,本文对算法分段结果的应用前景进行展望。

     

    Abstract: The maritime target monitoring system acquires a large number of trajectory data, deep mining and analysis of the target behavior characteristics is an important way to improve the performance of the traditional maritime target detection technology based on acoustic, optical and electromagnetic characteristics. In the pre-processing of data mining, such as trajectory clustering, trajectory prediction and behavior analysis, the mainstream trajectory segmentation algorithm aims to get the minimum loss and does not give the semantic meaning to the segmented trajectory, which limits the application of segmented trajectory. This paper proposed a segmentation algorithm of maritime target trajectory based behavior pattern. Seven target behavior patterns were defined to achieve the goal of trajectory segmentation. Experiment shows that the algorithm in this paper can segment the trajectory accurately and restore the trajectory accurate, different algorithm parameters correspond to different application scene. Finally, this paper has an outlook on application of segmentation results.

     

/

返回文章
返回