[1] |
Zheng Liang, Yang Yi, Tian Qi. SIFT meets CNN:A decade survey of instance retrieval[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2018, 40(5): 1224-1244.
|
[2] |
Bhattacharyya S, Bhaumik H, De S, et al. Intelligent Analysis of Multimedia Information[M]. Hershey: IGI Global, 2017: 143-180.
|
[3] |
Datta R, Joshi D, Jia L I, et al. Image Retrieval: Ideas, Influences, and Trends of the New Age[J]. ACM Computing Surveys, 2008, 40(2): 35-94.
|
[4] |
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
|
[5] |
Christian S, Liu Wei, Jia Yangqing, et al. Going deeper with convolutions[J], IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 1-9
|
[6] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014: 580-587.
|
[7] |
Szegedy C, Toshev A, Erhan D. Deep Neural Networks for Object Detection[C]// Advances in Neural Information Processing Systems. 2013, 2553-2561.
|
[8] |
Li Haoxiang, Lin Zhe, Shen Xiaohui, et al. A convolutional neural network cascade for face detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2015: 5325-5334.
|
[9] |
Sun Y, Wang X, Tang X. Deep Learning Face Representation by Joint Identification-Verification[J]. Advances in neural information processing systems, 2014: 1988-1966.
|
[10] |
Cimpoi M, Maji S, Vedaldi A. Deep convolutional filter banks for texture recognition and segmentation[J]. International Journal of Computer Vision, 2016, 118(1): 65-94.
|
[11] |
Ghodrati A, Diba A, Pedersoli M, et al. DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers[J]. International Journal of Computer Vision, 2017, 124(2): 115-131.
|
[12] |
Bruna J, Szlam A, Lecun Y. Signal Recovery from Pooling Representations[J]. Statistics, 2013: 307-315.
|
[13] |
Li Jinxing, Zhang Bob, Lu Guangming, et al. Dual Asymmetric Deep Hashing Learning[J]. IEEE Access, 2018.
|
[14] |
Ma Lei, Li Hongliang, Wu Qingbo, et al. Hierarchy Neighborhood Discriminative Hashing for An Unified View of Single-Label and Multi-Label Image retrieval[J]. 2019.
|
[15] |
Andoni A, Indyk P. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions[C]// 47th Annual IEEE symposium on foundations of computer science (FOCS'06). IEEE, 2006: 459-468.
|
[16] |
Carreira-Perpinan M A, Raziperchikolaei R. Hashing with binary autoencoders[C]//IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2015.
|
[17] |
Dai Bo, Guo Ruiqi, Kumar S, et al. Stochastic Generative Hashing[J]. International Conference on Machine Learning. 2017.
|
[18] |
Shi Xiaoshuang, Xing Fuyong, Xu Kaidi, et al. Asymmetric discrete graph hashing[C]// In Proceedings of the AAAI Conference on Artificial Intellignece. AAAI, 2017: 2541-2547.
|
[19] |
Li Zhao, Lu Wei, Xing Weiwei, et al. Image retrieval based on CNN visual features[J]. Journal of Beijing University of Posts and Telecommunications, 2015, 38(B06): 103-106.
|
[20] |
Gregory G, Alex H, Pietro P. Caltech-256 object category dataset[R]. Technical Report 7694, California Institute of Technology, 2007.
|
[21] |
James P,Ondrej C,Michael I, et al. Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases. [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2008.
|
[22] |
Li Feifei, Fergus R, Perona P. Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories[C]//Conference on Computer Vision and Pattern Recognition Workshop. IEEE, 2005.
|
[23] |
Vedaldi A, Lenc K. MatConvNet: Convolutional Neural Networks for MATLAB[J]. In Proceedings of the 23rd ACM international conference on Multimedia. 2014: 689-692.
|