宽带波达方向估计的辅助粒子滤波算法

吴孙勇, 姚明明, 薛秋条, 蔡如华

吴孙勇, 姚明明, 薛秋条, 蔡如华. 宽带波达方向估计的辅助粒子滤波算法[J]. 信号处理, 2019, 35(7): 1275-1280. DOI: 10.16798/j.issn.1003-0530.2019.07.018
引用本文: 吴孙勇, 姚明明, 薛秋条, 蔡如华. 宽带波达方向估计的辅助粒子滤波算法[J]. 信号处理, 2019, 35(7): 1275-1280. DOI: 10.16798/j.issn.1003-0530.2019.07.018
Wu Sunyong, Yao Mingming, Xue Qiutiao, Cai Ruhua. Auxiliary Particle Filtering Algorithm for Direction of Arrival Estimation of Wideband Signal[J]. JOURNAL OF SIGNAL PROCESSING, 2019, 35(7): 1275-1280. DOI: 10.16798/j.issn.1003-0530.2019.07.018
Citation: Wu Sunyong, Yao Mingming, Xue Qiutiao, Cai Ruhua. Auxiliary Particle Filtering Algorithm for Direction of Arrival Estimation of Wideband Signal[J]. JOURNAL OF SIGNAL PROCESSING, 2019, 35(7): 1275-1280. DOI: 10.16798/j.issn.1003-0530.2019.07.018

宽带波达方向估计的辅助粒子滤波算法

基金项目: 国家自然科学基金(61561016);广西自然科学基金(2016GXNSFAA380073);广西密码学信息安全重点实验室研究课题项目(GCIS201611);广西高校数据分析与计算重点实验室开放基金项目
详细信息
  • 中图分类号: TN911.25

Auxiliary Particle Filtering Algorithm for Direction of Arrival Estimation of Wideband Signal

  • 摘要: 针对粒子滤波宽带波达方向估计中因采样粒子权值不稳定导致估计误差较大的问题,提出了基于辅助粒子滤波的宽带波达方向估计算法。该算法利用贝叶斯重要性采样算法,在权值大的粒子基础上引入辅助粒子变量,重新定义重要性采样分布函数。经过两次加权计算,进而改善粒子退化问题,并引导粒子向高似然区域移动,使粒子在真实状态周围分布更均匀,粒子权值比仅用重采样的粒子权值变化更稳定。仿真实验表明,该算法在均方根误差和检测概率性能上优于粒子滤波算法。
    Abstract: In this paper, aiming at the problem of large estimation error caused by instability of sampling particle weight in wideband direction-of-arrival (DOA) estimation of particle filter, an algorithm based on auxiliary particle filter is proposed. In this algorithm, the importance sampling distribution function is redefined by introducing auxiliary particle variables to large weights particle. The two-weighted calculation makes the change of the particle weight ratio more stable and the sampling point more close to the true state. In the meantime, the problem of particle degeneracy is improved and the sampling particles are guided to the high likelihood region. Simulation results show that the performance of the proposed algorithm is better than standard particle filtering method in root mean square error and detection probability.
  • [1] Wan L, Han G, Jiang J, et al. Distributed DOA Estimation Based on Manifold Separation Technique in Mobile Wireless Sensor Networks[C]// The Workshop on Mobile Sensing. ACM, 2015:1-6.
    [2] Hafezi S, Moore A H, Naylor P A. Multiple DOA estimation based on estimation consistency and spherical harmonic multiple signal classification[C]// European Signal Processing Conference. 2017:1240-1244.
    [3] Wu Y, Leshem A, Jensen J R, et al. Joint Pitch and DOA Estimation Using the ESPRIT Method[J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2015, 23(1):32-45.
    [4] 艾名舜, 马红光. 基于网格爬山法的最大似然DOA估计算法[J]. 信号处理, 2011, 27(6):890-895. Ming-Shun A I. Maximum Likelihood DOA Estimator based on Grid Hill Climbing Method[J]. Signal Processing, 2011, 27(6):890-895.(in Chinese)
    [5] Zhang J, Dai J, Ye Z. An extended TOPS algorithm based on incoherent signal subspace method[J]. Signal Processing, 2010, 90(12):3317-3324.
    [6] Li J, Lin Q H, Kang C Y, et al. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing[J]. Sensors, 2018, 18(3):902-918.
    [7] Malek-Mohammadi, M, Jansson, M, Owrang, A, et al. DOA estimation in partially correlated noise using low-rank/sparse matrix decomposition[C]// Sensor Array and Multichannel Signal Processing Workshop. IEEE, 2014:373-376.
    [8] Tong Q, Jin Z X, Wei C. Fast covariance matrix sparse representation for DOA estimation based on dynamic dictionary[C]// IEEE, International Conference on Signal Processing. IEEE, 2017:138-143.
    [9] 赵永红, 张林让, 刘楠,等. 采用协方差矩阵稀疏表示的DOA估计方法[J]. 西安电子科技大学学报, 2016, 43(2):58-63. Zhao Y, Zhang L, Liu N, et al. DOA estimation method based on the covariance matrix sparse representation[J]. Journal of Xidian University, 2016, 43(2):58-63 and 101.(in Chinese)
    [10] Zhou C, Shi Z, Gu Y, et al. Doa estimation by covariance matrix sparse reconstruction of coprime array[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2015:2369-2373.
    [11] Yan H, Liu J. A New Particle Filter Target Tracking Algorithm[M]. 2014.
    [12] 吴孙勇, 廖桂生, 杨志伟. 基于粒子滤波的宽带信号波达方向估计[J]. 电子学报, 2011, 39(6):1353-1357. Sun-Yong W U, Liao G S, Yang Z W. Direction of Arrival Estimation of Wideband Signal Based on Particle Filters[J]. Acta Electronica Sinica, 2011, 39(6):1353-1357.(in Cinese)
    [13] 王洪有. 基于辅助粒子滤波算法的红外目标跟踪[J]. 应用光学, 2010, 31(1):132-135. Wang H Y. Infrared target tracking base on auxiliary particle filtering algorithm[J]. Journal of Applied Optics, 2010 , 31(1):132-135.(in Chinese)
  • 期刊类型引用(2)

    1. 吴孙勇,邹宝红,董续东,樊向婷. 声矢量阵列脉冲环境下的多伯努利机动源DOA跟踪. 桂林电子科技大学学报. 2021(01): 1-6 . 百度学术
    2. 涂豫,李国胜,覃羡烘. 基于因子图结合卡方检测的多AUV协同定位方法. 数据采集与处理. 2021(05): 978-985 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  86
  • HTML全文浏览量:  9
  • PDF下载量:  412
  • 被引次数: 2
出版历程
  • 收稿日期:  2018-11-07
  • 修回日期:  2019-02-03
  • 发布日期:  2019-07-24

目录

    /

    返回文章
    返回