GPFR混合模型的动态模型选择算法

Dynamic Model Selection Algorithm for GPFR Mixtures

  • 摘要: 作为一种有效的数据建模和分析工具,高斯过程混合(MGP)模型被广泛地应用于时间序列的分析与预测,并成为一种新的机器学习模型。在传统的MGP模型中,高斯过程(GP)的均值被假设为零,这给其应用带来了很大的局限性,因此人们提出了可进行均值函数学习的高斯过程函数回归(GPFR)模型及其混合模型(MGPFR)进行更为精细的数据建模。与MGP模型一样,MGPFR模型同样存在着模型选择的问题。为了解决MGPFR模型的模型选择问题,本文将同步平衡准则进行了推广,并提出了相应的模型选择和动态模型选择算法,并通过实验发现了惩罚项系数的合理区间。实验表明,这些算法在模型选择和预测上均有很好表现,并且能够有效地应用于曲线聚类。

     

    Abstract: As a powerful tool of data modeling and analysis, the mixture of Gaussian processes (MGP) is widely used in the fields of time series regression and prediction. In the conventional MGP models, the mean function of each GP model is assumed to be zero, but this assumption is not reasonable for many practical applications. In order to get rid of this limitation, Gaussian process functional regression (GPFR) is constructed to make the mean function learnable so that the mixture of GPRs (MGPFR) is more flexible for time series modeling. In the same way, we meet the model selection problem when using the MGPFR model. In order to solve this problem, we generalize the SBC and propose the model selection and dynamic model selection algorithms to the case of the MGPFR models. It is demonstrated by the experiments that the model selection and dynamic model selection algorithms for the MGPFR models perform well on both model selection and prediction, and can be successfully applied to curve classification.

     

/

返回文章
返回