时间约束NMF算法及其在脑动态功能网络降维中的应用

Time-constrained NMF algorithm and its application in brain dynamic functional network dimension reduction

  • 摘要: 为了保证高维数据中的时间属性在降维过程中得以保持,提出了一种时间约束非负矩阵分解算法(Time constraint Non-negative Matrix Factorization,TNMF)。该算法通过融合时间序列信息、数据维度,分解误差等约束条件,共同构建时间属性约束模型,计算最优基矩阵维度,能在降维的同时最大限度地保留原始高维数据的空间结构和时间序列信息。将其用于脑动态功能网络降维的实验结果表明,该算法在时间特征提取、聚类可视化效果和聚类指标上明显优于目前常用的降维聚类算法。

     

    Abstract: In order to ensure the time attributes of high-dimensional data can be preserved during the process of dimensionality reduction, a time-constrained non-negative matrix factorization (TNMF) algorithm is proposed. A time attribute constraint model is constructed by considering time series information, data dimension value, decomposition error together, then the optimal base matrix dimension value can be calculated. Using this algorithm, the spatial structure and time sequence information of original high-dimensional data will not change while the dimension reducing. The experiment results in human brain dynamic functional network dimension reduction show that this algorithm is superior to commonly used algorithms in temporal feature extraction, clustering visualization and clustering index.

     

/

返回文章
返回