粒子流粒子滤波检测前跟踪方法

柳超, 王子微, 孙进平

柳超, 王子微, 孙进平. 粒子流粒子滤波检测前跟踪方法[J]. 信号处理, 2019, 35(3): 342-350. DOI: 10.16798/j.issn.1003-0530.2019.03.004
引用本文: 柳超, 王子微, 孙进平. 粒子流粒子滤波检测前跟踪方法[J]. 信号处理, 2019, 35(3): 342-350. DOI: 10.16798/j.issn.1003-0530.2019.03.004
Liu Chao, Wang Zi-wei, Sun Jin-ping. Particle Flow Particle Filter Track-Before-Detect Method[J]. JOURNAL OF SIGNAL PROCESSING, 2019, 35(3): 342-350. DOI: 10.16798/j.issn.1003-0530.2019.03.004
Citation: Liu Chao, Wang Zi-wei, Sun Jin-ping. Particle Flow Particle Filter Track-Before-Detect Method[J]. JOURNAL OF SIGNAL PROCESSING, 2019, 35(3): 342-350. DOI: 10.16798/j.issn.1003-0530.2019.03.004

粒子流粒子滤波检测前跟踪方法

基金项目: 国家自然科学基金资助项目(61471019,U1633122)
详细信息
    通讯作者:

    柳超   E-mail: LC2016@buaa.edu.cn

  • 中图分类号: TP391.41

Particle Flow Particle Filter Track-Before-Detect Method

More Information
    Corresponding author:

    Liu Chao   E-mail: LC2016@buaa.edu.cn

  • 摘要: 检测前跟踪通过在连续多帧观测中对目标信号进行非相参积累以检测和跟踪微弱目标。积累的关键在于对目标轨迹的准确估计和多帧迭代滤波。传统粒子滤波器过于依赖建议分布,对目标轨迹的估计不够准确。新提出的粒子流滤波器是一种很好的替代方法,但其过于依赖当前时刻的量测而弱化多帧迭代滤波。本文提出一种在粒子滤波框架下采用粒子流的检测前跟踪方法:采用粒子滤波器进行多帧迭代滤波,但在每一帧内,采用Localized Exact Daum-Huang粒子流进行滤波。为了应对目标量测的不确定性,本文改造了Localized Exact Daum-Huang滤波器,为每个粒子在其邻域内寻找最大似然量测,并利用该量测更新粒子状态。Rayleigh分布杂波下Swerling1型起伏目标的检测和跟踪实验证明了所提算法的性能。
    Abstract: The track-before-detect method detects and tracks weak targets by non-coherent integration of target signals over continuous multiple frames. The key to this integration lies in the accurate estimation of the target trajectory and multi-frame iterative filtering. Traditional particle filters rely highly on the proposal distribution, and thus the estimation of the target trajectory is not accurate enough. The newly proposed particle flow filter is a promising alternative. However, it relies significantly on current measurement and neglects the multi-frame iterative filtering. In this paper, a novel track-before-detect strategy is presented. The particle filter is exploited for multi-frame iterative filtering, but within each frame, the filtering process is completed by the Localized Exact Daum-Huang filter. In order to deal with the uncertainty of measurement, the Localized Exact Daum-Huang filter is modified. Each particle finds in its neighborhood the measurement with maximum likelihood, and then the measurement is used to update the particle state. The performance of the proposed algorithm is evaluated by detecting and tracking a Swerling 1 target in Rayleigh clutter.
  • [1] Davey S J,Rutten M G,Gordon A N J. Track-before-detect techniques:Integrated Tracking,Classification,and Sensor Management:Theory and Applications [M]. USA,John Wiley & Sons,2013:311-318.
    [2] Berry P,Venkataraman K,Rosenberg L. Adaptive detection of low-observable targets in correlated sea clutter using Bayesian track-before-detect [C]// Proc. IEEE Radar Conference,Seattle,WA,USA,2017:0398-0403.
    [3] Northardt T,Nardone S C. Track-Before-Detect Bearings-Only Localization Performance in Complex Passive Sonar Scenarios: A Case Study [J]. IEEE Journal of Oceanic Engineering (preprint).
    [4] Davey S J,Rutten M G,Cheung B. A comparison of detection performance for several Track-Before-Detect algorithms [J]. Eurasip Journal on Advances in Signal Processing,2007,2008(1):1-10.
    [5] Jiang H,Yi W,Kirubarajan T,et al. Multi-Frame Radar Detection of Fluctuating Targets Using Phase Information [J]. IEEE Trans Aerosp. Electr. Syst,2017,53(2):736-749.
    [6] Sahin G,Demirekler M. A Multi-Dimensional Hough Transform Algorithm based on Unscented Transform as a Track-Before-Detect method[C]//Proc. Int. Conf. Inf. Fusion. Salamanca,Spain,2014:1-8.
    [7] Ciuonzo D,Willett P K,Barshalom Y. Tracking the Tracker from its Passive Sonar ML-PDA Estimates [J]. IEEE Trans. Aerosp. Electron. Syst.,2014,50(1):573-590.
    [8] BOERS,DRIESSEN,J. N. Multitarget particle filter track before detect application[J]. IEE Proc. Radar Sonar & Navig.,2004, 151(6):351-357.
    [9] Malcolm R,David S. Particle filter for track-before-detect of a target with unknown amplitude viewed against a structured scene [J]. IET Radar,Sonar & Navig.,2018,12(6):603-609.
    [10] 柳超,李秀友,黄勇. 优化的多模型粒子滤波机动微弱目标检测前跟踪方法[J].信号处理,2015,31(9):1131-1137.
    [11] LIU Chao,LI Xiu-You,HUANG Yong. Optimized Multiple Model Particle Filter Track-Before-Detect Algorithm for Maneuvering Weak Target [J]. Journ. signal process.,2015,31(9):1131-1137. (in Chinese)
    [12] 王娜,谭顺成,王国宏.目标数未知时基于粒子滤波的多目标TBD方法[J].信号处理,2017,33(9): 1248-1257.
    [13] Wang Na, Tan Shuncheng, Wang Guohong. Multitarget Particle Filter Track-Before-Detect Algorithm with Unknown Target Number [J]. Journal of signal processing,2017,33(9):1248-1257. (in Chinese)
    [14] Daum F.,and Huang,J. Particle Degeneracy:Root Cause and Solution [C]// Proc. SPIE Conf. Signal Process.,Sensor Fusion and Target Recog.,Orlando,FL,2011,80500W.
    [15] Li Y,Coates M. Particle Filtering with Invertible Particle Flow [J]. IEEE Trans. Signal Process.,2017,65(15):4102-4116.
    [16] A. Doucet, N. d. Freitas, K. P. Murphy, et al. Rao-Blackwellised particle filtering for dynamic Bayesian networks[C]// Proc. Conf. Uncertainty Artif. Intell.,San Francisco,CA,USA,2000,pp. 176–183.
    [17] R. van der Merwe,A. Doucet,N. De Freitas, et al. The unscented particle filter [C]// Proc. Neural Inf. Process. Syst., Denver, CO,USA,Dec. 2000,pp. 584–590.
    [18] M. Pitt,N. Shephard. Filtering via Simulation:Auxiliary Particle Filters [J]. Journ. Amer. Statist. Assoc.,1999,94(446):590–599.
    [19] F. Septier and G. W. Peters. Langevin and Hamiltonian based Sequential MCMC for Efficient Bayesian Filtering in High-dimensional Spaces [J]. IEEE Journ. Selec. Topics Signal Process.,2016,10(2):312–327.
    [20] U. D. Hanebeck,K. Briechle, and A. Rauh. Progressive Bayes: A New Framework for Nonlinear State Estimation [C]// Proc. SPIE,2003 (5099):pp. 256–267.
    [21] F. Daum and J. Huang. Nonlinear filters with log-homotopy [C]// Proc. SPIE,vol. 6699,Sep. 2007,Art. no. 669918.
    [22] F. Daum,J. Huang,and A. Noushin. Exact particle flow for nonlinear filters [J]// Proc. SPIE,vol. 7697,Apr. 2010, p. 769704.
    [23] T. Ding and M. Coates. Implementation of the Daum-Huang Exact Flow Particle Filter [C]//Proc. IEEE Statist. Signal Process. Workshop,Ann Arbor,MI,USA,Aug. 2012:257–260.
    [24] S. Reich. A Dynamical Systems Framework for Intermittent Data Assimilation [J]. Bit Numerical Mathematics,2011,51(1):235-249.
    [25] S. Reich. A Gaussian-mixture Ensemble Transform Filter [J]. Quarter. Journ. Royal Meteoro. Society,2012,138(662):222-233.
    [26] Kreucher C,Bell K. A Geodesic Flow Particle Filter for Non-thresholded Measurements [C]// Proc. IEEE Radar Conf., Seattle, WA,USA,2017:0891-0896.
    [27] Bunch P,Godsill S. Approximations of the Optimal Importance Density Using Gaussian Particle Flow Importance Sampling [J]. Journ. Ame. Statist. Assoc.,2014,111(514):748-762.
    [28] F. Daum and J.Huang. Particle Flow for Nonlinear Filters,Bayesian Decisions and Transport[C]//Proc. IEEE Int. Conf. Inf. Fusion,Istanbul,Turkey,2013:1072–1079.
    [29] Punithakumar K,Kirubarajan T. A Sequential Monte Carlo Probability Hypothesis Density Algorithm for Multitarget Track-before-detect [J]. Proc. SPIE- Int. Society Optical Engineer.,2005:59131S-59131S-8.
  • 期刊类型引用(4)

    1. 何佳佳,薛诗乐,何建强. 基于多特征融合的羽毛球扣杀动作轨迹跟踪. 信息技术. 2023(11): 68-72 . 百度学术
    2. 董文豪,黄倩兰,范红旗,付强,宋志勇. 单脉冲雷达导引头联合检测与DOA估计算法. 航空兵器. 2022(01): 98-106 . 百度学术
    3. 董文豪,汪静怡,宋志勇,付强. 基于自适应新生密度的多目标联合检测与解模糊. 信号处理. 2022(03): 474-482 . 本站查看
    4. 柳超,孙进平,袁常顺,王子微. Geodesic流多伯努利检测前跟踪方法. 电子学报. 2020(07): 1375-1379 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  138
  • HTML全文浏览量:  9
  • PDF下载量:  487
  • 被引次数: 6
出版历程
  • 收稿日期:  2018-12-30
  • 修回日期:  2019-03-05
  • 发布日期:  2019-03-24

目录

    /

    返回文章
    返回