认知MIMOME系统安全速率最大化算法研究

Secrecy Rate Maximization of Cognitive MIMOME System

  • 摘要: 文章主要从安全速率(secrecy rate)最大化的角度研究了多输入多输出多天线窃听者(Multiple-Input Multiple-Output Multiple-antenna Eavesdropper,MIMOME)认知无线网络的物理层安全问题。针对在次用户的发送信号中加入人工噪声的安全策略,研究了实现系统安全速率最大化的优化问题。该优化问题属于非凸问题,本文提出了一种双层迭代优化算法,将内层问题通过求解一系列的半正定问题进行有效处理,而将外层问题变换为一个单变量的优化,从而通过一维搜索得到最优解。进一步,将该优化求解算法扩展到非理想信道状态信息情况,采用基于最差情况下的鲁棒人工噪声设计,保证在椭球不确定集内的所有信道实现均能够满足。最后仿真验证了该优化算法在理想和非理想信道状态信息下算法的有效性,与迫零人工噪声预编码优化算法相比,该算法可获得更高的安全速率。

     

    Abstract: The physical layer security of MIMOME Cognitive Radio Networks (CRN) with respect of the secrecy rate maximization is studied. We consider the optimization problem of maximizing the system security rate on the security strategy of adding artificial noise into the transmitting signal of the Secondary User Transmitter (SU-Tx). The optimization problem is non-convex. In this paper, a two-layer optimization algorithm is proposed. The inner layer problem can be efficiently handled by solving a sequence of semi-definite problems, and the outer layer problem can be converted to a single-variable optimization problem, which can be tackled by one-dimensional search. Furthermore, the algorithm is extended to the case of imperfect Channel State Information (CSI), and a worst case based robust artificial noise approach is designed to ensure that all the channel constraints can be satisfied within ellipsoid-bounded uncertainty regions. The simulation results verify the effectiveness of the algorithm in both perfect and imperfect CSI, especially compared with the zero-forcing artificial noise precoding optimization algorithm, which obtains the higher security rate.

     

/

返回文章
返回