LI Guchong,LI Tiancheng,YAN Ruibo. Robust tracking algorithm based on belief propagation in heavy-tailed noise environments[J]. Journal of Signal Processing,2024,40(11):2007-2017. DOI: 10.12466/xhcl.2024.11.006.
Citation: LI Guchong,LI Tiancheng,YAN Ruibo. Robust tracking algorithm based on belief propagation in heavy-tailed noise environments[J]. Journal of Signal Processing,2024,40(11):2007-2017. DOI: 10.12466/xhcl.2024.11.006.

Robust Tracking Algorithm Based on Belief Propagation in Heavy-Tailed Noise Environments

Funds: 

The National Natural Science Foundation of China 62201316

The National Natural Science Foundation of China 62071389

Aerospace Science Fund 2023Z017053001

Fundamental Research Funds for the Central Universities G2024KY05105

More Information
  • Corresponding author:

    LI TianchengLI Tiancheng,t.c.li@nwpu.edu.cn

  • Received Date: May 10, 2024
  • ‍ ‍Multi-target tracking technology can simultaneously estimate the states and quantities of targets in complex tracking environments where the number of targets is unknown and missed detections, clutter, and noise exist. This technology has been widely applied in fields such as airborne early warning, autonomous driving, and mobile robotics, with significant application value in both defense and civilian technologies. However, in practical tracking environments, external interference and sensor instability can lead to outliers in measurement noise, exhibiting heavy-tailed characteristics. Additionally, the inaccurate motion models of targets in cluttered environments can generate heavy-tailed process noise. Continuing multi-target filtering under the Gaussian assumption in such scenarios significantly reduces tracking accuracy. A common solution to addressing this issue is to model heavy-tailed process and measurement noise as Student’s t-distributions and use them to correct standard multi-target filters under the random finite set (RFS) theory, thereby ensuring that the tracking performance does not diverge. However, multi-target tracking methods based on the RFS theory often incur substantial computational costs, resulting in increased system latency. This study proposes a robust multi-target tracking algorithm based on belief propagation (BP), leveraging its strong scalability and low computational complexity. The algorithm first approximates the posterior probability density functions of each target as Student’s t-distribution mixture models, then recursively updates them through BP iterations, and finally estimates target states based on decision thresholds. Simulation experiments demonstrate that, compared to existing algorithms, the proposed algorithm achieves robust and effective tracking performance in scenarios with heavy-tailed processes and measurement noise.

  • [1]
    MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Boston:Artech House,2007. doi:10.1201/9781420053098.ch16 doi: 10.1201/9781420053098.ch16
    [2]
    MAHLER R P S. Advances in Statistical Multisource-Multitarget Information Fusion[M]. Boston:Artech House,2014.
    [3]
    MEYER F,BRACA P,WILLETT P,et al. A scalable algorithm for tracking an unknown number of targets using multiple sensors[J]. IEEE Transactions on Signal Processing,2017,65(13):3478- 3493. doi:10.1109/tsp.2017.2688966 doi: 10.1109/tsp.2017.2688966
    [4]
    MEYER F,KROPFREITER T,WILLIAMS J L,et al. Message passing algorithms for scalable multitarget tracking[J]. Proceedings of the IEEE,2018,106(2):221- 259. doi:10.1109/jproc.2018.2789427 doi: 10.1109/jproc.2018.2789427
    [5]
    KSCHISCHANG F R,FREY B J,LOELIGER H A. Factor graphs and the sum-product algorithm[J]. IEEE Transactions on Information Theory,2001,47(2):498- 519. doi:10.1109/18.910572 doi: 10.1109/18.910572
    [6]
    MEYER F,WIN M Z. Scalable data association for extended object tracking[J]. IEEE Transactions on Signal and Information Processing Over Networks,2020,6:491- 507. doi:10.1109/tsipn.2020.2995967 doi: 10.1109/tsipn.2020.2995967
    [7]
    SU Zhenzhen,JI Hongbing,ZHANG Yongquan. Loopy belief propagation based data association for extended target tracking[J]. Chinese Journal of Aeronautics,2020,33(8):2212- 2223. doi:10.1016/j.cja.2020.01.004 doi: 10.1016/j.cja.2020.01.004
    [8]
    MEYER F,ETZLINGER B,LIU Zhenyu,et al. A scalable algorithm for network localization and synchronization[J]. IEEE Internet of Things Journal,2018,5(6):4714- 4727. doi:10.1109/jiot.2018.2811408 doi: 10.1109/jiot.2018.2811408
    [9]
    CORMACK D,HOPGOOD J R. Sensor registration and tracking from heterogeneous sensors with belief propagation[C]// 2019 22th International Conference on Information Fusion(FUSION). Ottawa,ON,Canada. IEEE,2019:1- 8. doi:10.23919/fusion43075.2019.9011389 doi: 10.23919/fusion43075.2019.9011389
    [10]
    SHARMA P,SAUCAN A A,BUCCI D J,et al. Decentralized Gaussian filters for cooperative self-localization and multi-target tracking[J]. IEEE Transactions on Signal Processing,2019,67(22):5896- 5911. doi:10.1109/tsp.2019.2946017 doi: 10.1109/tsp.2019.2946017
    [11]
    GAGLIONE D,BRACA P,SOLDI G. Belief propagation based AIS/radar data fusion for multi-target tracking[C]// 2018 21st International Conference on Information Fusion(FUSION). Cambridge,UK. IEEE,2018:2143- 2150. doi:10.23919/icif.2018.8455217 doi: 10.23919/icif.2018.8455217
    [12]
    LI Guchong,BATTISTELLI G,CHISCI L,et al. Distributed multi-view multi-target tracking based on CPHD filtering[J]. Signal Processing,2021,188:108210. doi:10.1016/j.sigpro.2021.108210 doi: 10.1016/j.sigpro.2021.108210
    [13]
    LI Guchong,LI Gang,HE You. Resolvable group target tracking via multi-Bernoulli filter and its application to sensor control scenario[J]. IEEE Transactions on Signal Processing,2022,70:6286- 6299. doi:10.1109/tsp.2023.3236158 doi: 10.1109/tsp.2023.3236158
    [14]
    LI Tiancheng,HU Zheng,LIU Zhunga,et al. Multisensor suboptimal fusion student’s t filter[J]. IEEE Transactions on Aerospace Electronic Systems,2023,59(3):3378- 3387. doi:10.1109/taes.2022.3210157 doi: 10.1109/taes.2022.3210157
    [15]
    GORDON N J,SMITH A F M. Approximate non-Gaussian Bayesian estimation and modal consistency[J]. Journal of the Royal Statistical Society:Series B(Methodological),1993,55(4):913- 918. doi:10.1111/j.2517-6161.1993.tb01949.x doi: 10.1111/j.2517-6161.1993.tb01949.x
    [16]
    BILIK I,TABRIKIAN J. Maneuvering target tracking in the presence of glint using the nonlinear Gaussian mixture Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems,2010,46(1):246- 262. doi:10.1109/taes.2010.5417160 doi: 10.1109/taes.2010.5417160
    [17]
    ROTH M,ÖZKAN E,GUSTAFSSON F. A Student’s t filter for heavy tailed process and measurement noise[C]// 2013 IEEE International Conference on Acoustics,Speech and Signal Processing. Vancouver,BC,Canada. IEEE,2013:5770- 5774. doi:10.1109/icassp.2013.6638770 doi: 10.1109/icassp.2013.6638770
    [18]
    HUANG Yulong,ZHANG Yonggang,LI Ning,et al. A novel robust student’s t-based Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems,2017,53(3):1545- 1554. doi:10.1109/taes.2017.2651684 doi: 10.1109/taes.2017.2651684
    [19]
    HUANG Yulong,ZHANG Yonggang,LI Ning,et al. Robust student’s t based nonlinear filter and smoother[J]. IEEE Transactions on Aerospace and Electronic Systems,2016,52(5):2586- 2596. doi:10.1109/taes.2016.150722 doi: 10.1109/taes.2016.150722
    [20]
    HUANG Yulong,ZHANG Yonggang. Robust student’s t-based stochastic cubature filter for nonlinear systems with heavy-tailed process and measurement noises[J]. IEEE Access,2017,5:7964- 7974. doi:10.1109/access.2017.2700428 doi: 10.1109/access.2017.2700428
    [21]
    WANG Mingjie,JI Hongbing,ZHANG Yongquan,et al. A student’s t mixture cardinality-balanced multi-target multi-Bernoulli filter with heavy-tailed process and measurement noises[J]. IEEE Access,2018,6:51098- 51109. doi:10.1109/ACCESS.2018.2869419 doi: 10.1109/ACCESS.2018.2869419
    [22]
    陈树新,洪磊,吴昊,等. 学生t混合势均衡多目标多伯努利滤波器[J]. 电子与信息学报,2019,41(10):2457- 2463.

    CHEN Shuxin,HONG Lei,WU Hao,et al. Student’s t mixture cardinality balanced multi-target multi-Bernoulli filter[J]. Journal of Electronics& Information Technology,2019,41(10):2457- 2463.(in Chinese)
    [23]
    赵子文,陈辉,连峰,等. 厚尾噪声条件下的学生t泊松多伯努利混合滤波器[J/OL]. 控制理论与应用,1- 13[ 2024-07-13]. http://kns.cnki.net/kcms/detail/44.1240.tp.20230928.0817.018.html.

    ZHAO Ziwen,CHEN Hui,LIAN Feng,et al. A student’s t Poisson multi-Bernoulli mixture filter in the presence of heavy-tailed noise[J/OL]. Control Theory& Applications,1- 13[ 2024-07-13]. http://kns.cnki.net/kcms/detail/44.1240.tp.20230928.0817.018.html.(in Chinese)
    [24]
    ZHU Jiangbo,XIE Weixin,LIU Zongxiang. Student’s t-based robust Poisson multi-Bernoulli mixture filter under heavy-tailed process and measurement noises[J]. Remote Sensing,2023,15(17):4232. doi:10.3390/rs15174232 doi: 10.3390/rs15174232
    [25]
    DONG Peng,JING Zhongliang,LEUNG H,et al. Student-t mixture labeled multi-Bernoulli filter for multi-target tracking with heavy-tailed noise[J]. Signal Processing,2018,152:331- 339. doi:10.1016/j.sigpro.2018.06.014 doi: 10.1016/j.sigpro.2018.06.014
    [26]
    BAR-SHALOM Y,WILLETT P K,TIAN Xin. Tracking and Data Fusion[M]. Storrs,CT,USA:YBS Publishing,2011.
    [27]
    VO B T,VO B N,CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing,2009,57(2):409- 423. doi:10.1109/tsp.2008.2007924 doi: 10.1109/tsp.2008.2007924
    [28]
    SCHUHMACHER D,VO B T,VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing,2008,56(8):3447- 3457. doi:10.1109/tsp.2008.920469 doi: 10.1109/tsp.2008.920469
    [29]
    YUAN Changshun,WANG Jun,LEI Peng,et al. Adaptive multi-Bernoulli filter without need of prior birth multi-Bernoulli random finite set[J]. Chinese Journal of Electronics,2018,27(1):115- 122. doi:10.1049/cje.2017.10.010 doi: 10.1049/cje.2017.10.010
  • Related Articles

    [1]JIANG Wanyue, GAN Runhe, XIA Wei, LI Huiyong, LI Ming. Distributed Tracking of Extended Objects Based on IMM[J]. JOURNAL OF SIGNAL PROCESSING, 2024, 40(5): 957-969. DOI: 10.16798/j.issn.1003-0530.2024.05.013
    [2]DU Tao, SUN Luyue, ZHANG Jie, WANG Yanping. An Event-triggered Student’s t Extended Kalman Filter Under Multiple Attacks[J]. JOURNAL OF SIGNAL PROCESSING, 2023, 39(11): 2022-2029. DOI: 10.16798/j.issn.1003-0530.2023.11.011
    [3]XU Wen, WU Yusang, ZHANG Ting. Study on Distributed Algorithm for Multi-Array Underwater Multi-Target Tracking[J]. JOURNAL OF SIGNAL PROCESSING, 2023, 39(10): 1764-1774. DOI: 10.16798/j.issn.1003-0530.2023.10.004
    [4]LI Mengfan, SONG Zhiyong, GUO Miaomiao, DENG Haodong, ZHANG Pengfei, XU Guizhi. An Adaptive EEGNet-T Distribution Decoding Algorithm Based on K-L Divergence and Deep Clustering[J]. JOURNAL OF SIGNAL PROCESSING, 2023, 39(8): 1465-1477. DOI: 10.16798/j.issn.1003-0530.2023.08.012
    [5]LI Jiatong, YANG Jinlong. A Maneuvering Non-ellipsoidal Extended Target Tracking Algorithm Based on PMBM Filter[J]. JOURNAL OF SIGNAL PROCESSING, 2023, 39(6): 1108-1119. DOI: 10.16798/j.issn.1003-0530.2023.06.016
    [6]FAN Ji, e. Research on Distributed Multi-Sensor Multi-Target Tracking Algorithm[J]. JOURNAL OF SIGNAL PROCESSING, 2021, 37(3): 390-398. DOI: 10.16798/j.issn.1003-0530.2021.03.009
    [7]Duan Keke, Tai Yingying. Distributed multi-target tracking in sensor network with limited field of view[J]. JOURNAL OF SIGNAL PROCESSING, 2020, 36(8): 1344-1351. DOI: 10.16798/j.issn.1003-0530.2020.08.018
    [8]Xu Yue, Yang Jinlong, Ge Hongwei. An improved algorithm of distributed multi-sensor multi-target tracking[J]. JOURNAL OF SIGNAL PROCESSING, 2020, 36(8): 1212-1226. DOI: 10.16798/j.issn.1003-0530.2020.08.004
    [9]Wang Xiao-li, Li Liang-qun, Xie Wei-xin. T-S Fuzzy Multiple Model Target Tracking Algorithm with UKF Parameter Identification[J]. JOURNAL OF SIGNAL PROCESSING, 2019, 35(3): 361-368. DOI: 10.16798/j.issn.1003-0530.2019.03.006
    [10]YE Ying-hui, LU Guang-yue. Employing correlation coefficient and goodness of fit for blind spectrum sensing[J]. JOURNAL OF SIGNAL PROCESSING, 2016, 32(11): 1363-1368. DOI: 10.16798/j.issn.1003-0530.2016.11.012
  • Cited by

    Periodical cited type(5)

    1. 孙文,孙吉利,卢虹良. 基于非匹配滤波的SAR通信一体化技术. 中国科学院大学学报(中英文). 2024(03): 387-397 .
    2. 吴仁彪,王建刚,王晓亮,何炜琨. 强运动杂波环境下弱小无人机目标检测方法. 中国民航大学学报. 2023(01): 22-29 .
    3. 高靖霞,王海涛,欧阳缮,廖可非. 基于5G的外辐射源雷达模糊函数研究. 太赫兹科学与电子信息学报. 2023(11): 1333-1341 .
    4. 吴振南,姚瑶,张文旭,代雪飞,张发洋. 一种OFDM雷达通信共享信号优化设计方法. 制导与引信. 2022(01): 29-34+55 .
    5. 王舒玉,马智杰,张天贤,杨建宇. OFDM雷达信号联合优化设计与处理方法. 信号处理. 2022(11): 2299-2307 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (113) PDF downloads (44) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return