用信道编码构造压缩感知测量矩阵

董小亮 杨良龙 赵生妹 郑宝玉

(南京邮电大学,信号处理与传输研究院,南京210003)

摘 要: 压缩感知是近年来,针对稀疏信号和可压缩信号的处理而出现的一种信号处理理论。测量矩阵是压缩感 知理论中的一个至关重要的环节,它对信号采样和重构算法有着重要的影响。虽然一般传统的随机测量矩阵重 建信号效果比较好,但有硬件实现比较困难的问题,并需要大量的存储空间和其他缺陷。确定性测量矩阵的出 现,正好弥补了这些缺点。在本文中,基于信道编码中校验矩阵特性的优势,获得了满足有限紧致特性要求的 确定性测量矩阵构造方法。把校验矩阵的列向量标准化、线性组合扩展到方阵、置换列向量后构成的矩阵作为 确定性测量矩阵。这种方法可以在构造完成一个信道编码校验矩阵后,很容易构造对应的测量矩阵。数值结果 表明,在相同重建算法和压缩比下,这种方法的性能和随机测量矩阵大致相若,甚至有所改善。同时,本文提 出方法的构造时间较少,重建时只需要运行一次,可以满足实时性需求。为压缩感知算法的实际应用提供了一 种有效的测量矩阵构造方法。

关键词: 压缩感知; 信道编码; 随机测量矩阵; 确定性测量矩阵 中图分类号: TN911 文献标识码: A 文章编号: 1003-0530(2013)07-0809-07

Channel coding for compressed sensing measurement matrix

DONG Xiao-liang YANG Liang-long ZHAO Sheng-mei ZHENG Bao-yu (Institute of Signal Processing & Transmission Nanjing University of Posts and Telecommunications Nanjing 210003)

Abstract: Compressed sensing , which is the emergence of a signal processing theory sparse signal and compressible signals in recent years. The measurement matrix is a vital link in the compressed sensing theory , its signal sampling and reconstruction algorithm has an important impact. Although the traditional random measurement matrix for the reconstruction is quite good , but its hardware implementation is difficult and requires a lot of storage space and other defects. While The emergence of the deterministic measurement matrix , makes up for these shortcomings. Using the advantages of the channel coding check matrix , we put forward the way to meet the requirements of the restricted isometry property , through the constructor of the deterministic measurement matrix. We make the standardization of a parity check matrix of the column vector , and extend it to a square linear combination of the permutation matrix column vector , then a deterministic measurement matrix. Numerical results show that , under the same reconstruction algorithm and compression ratio , the performance of this method is close to the random measurement matrix , even improved. The same time , it costs less time with the reconstruction being run once only , which can meet the real-time requirements. The practical application of the compressed sensing algorithm , provides an effective measurement matrix construction method.

Key words: Compressed sensing; Channel coding; Random measurement matrix; Deterministic measurement matrix

收稿日期: 2013-05-03; 修回日期: 2013-07-08

基金项目: 国家自然科学基金(61271238); 中国高等教育博士学科点专项科研基金(20123223110003); 江苏省高校自然科学研究重 大项目(11KJA510002); 固体微结构物理国家重点实验室开放课题(M25020,M25022)

1 引言

压缩感知理论(Compressed Sensing,CS)^[1-4] 是 一个新的信号采样理论,将采样与压缩在同一时间 进行。通过少量的随机投影(高维信号到低维空间 的降维)所获得观测值,来实现精确重建稀疏或可 压缩信号。它有效地减少了信号的采样的所需时 间和复杂性,为高速数据存储、传输和处理等带来 极大方便,可在未来广泛应用,现已在语音识别^[5], 无线传感器网络^[6],图像信号处理^[7]和信息论与编 码^[8]等领域得到应用。

测量矩阵是 CS 理论中的一个至关重要的环 节,它对信号采样和重构算法有着重要的影响。为 保证随机投影后信号的大部分能量能够被保持,测 量矩阵必须满足有限紧致特性(Restricted Isometry Property, RIP)^[9]。测量矩阵可分为两种 随机测量 矩阵和确定性测量矩阵[11]。确定性测量矩阵是通 过已知部分信息而构造成整个测量矩阵 反之即为 随机测量矩阵。随机测量矩阵的每个元素都是相 互独立分布的 因此可以尽可能的保证测量矩阵列 之间的非相关性 这样就能使用较少的采样值来获 得精确的重建,如高斯矩阵、稀疏投影矩阵、亚高斯 矩阵和贝努利矩阵等^[10]。但是随机测量矩阵有一 些固有的缺点,如占用较大存储空间、花费较大的 计算量和时间复杂度 这些都不利于硬件实现。利 用确定性测量矩阵来取代随机测量矩阵受到了极 大的关注[11-6]。从构造方法上,目前压缩感知中确 定性测量矩阵可分为两类:类似多项式矩阵[11]的基 于有限域的确定性测量矩阵,类似离散 Chirp 及二 阶 Reed-Muller 编码矩阵^[17],训练优化算法构造的 矩阵^[18-20]等的基于特定编码的确定性测量矩阵。

本文在确定性测量矩阵设计要求的基础上,利 用信道编码中校验矩阵的列向量具有线性独立、可 稀疏设计、有常用构造方法等特点,提出了一种压 缩感知确定性测量矩阵的构造方法。通过数值仿 真,比较了本文所提出的确定性测量矩阵与经典随 机高斯测量矩阵和其他确定性测量矩阵在压缩感 知重建中的性能差异,验证了本确定性测量矩阵构 造方法的有效性。

2 基于信道编码的确定性测量矩阵构造方法

首先,我们给出压缩感知中测量矩阵构造的基本要求。在压缩感知重建算法中,若初始信号 $x \in R^{N}$,且存在稀疏正交基 Y = $(y_{1}, y_{2}, \dots, y_{N})_{N \times N}$ 则信 号 x 可以表示为:

 $x = Y\theta \tag{1}$

其中 $\theta = (\theta_1, \theta_2, \dots, \theta_N)^{\mathrm{T}}$ 。同时得到 $\theta = Y^{\mathrm{T}}x$,若令 Φ 为测量矩阵, $\Phi = (\Phi_1, \Phi_2, \dots, \Phi_N)$,且 $\Phi_k = (\varphi_{1,k}, \varphi_{2,k}, \dots, \varphi_{N,k})^{\mathrm{T}}$, k = 1, 2, \dots , N, 测量值为, $y = \Phi x = \Phi Y \theta = A^{CS} \theta$,则有:

$$A^{CS} \equiv \Phi Y \tag{2}$$

其中 稀疏正交基和测量矩阵间非相关性定义为:

$$\mu(\Phi, \mathbf{Y}) = \sqrt{N} \max_{1 \le k \le N} |\langle \Phi_k, \mathbf{Y}_j \rangle|$$
(3)

其中 <•>表示内积 ,且 1 $\leq \mu$ (Φ ,Y) $\leq \sqrt{N}$ 。若 μ (Φ , Y) 越小 则压缩感知中所需要的测量数越少 ,即 Φ 和 Y 越不相关。

研究结果表明: 对确定的正交基 Y,可以依赖于 测量矩阵与稀疏基之间的非相关性来设计确定性 测量矩阵 Φ。如果我们能保证稀疏基与测量矩阵之 间是非相关的,那么欠定系统方程的系数矩阵将以 很大概率满足 RIP 性质^[9]。因此,压缩感知测量矩 阵需要满足以下三个条件^[21]:

 测量矩阵列向量之间满足一定的线性独 立性;

 2) 测量矩阵的列向量能够体现某种类似噪 声的随机独立性;

3) 满足稀疏度的解是满足 *l*₀ 范数最小的量;
 对确定的正交基 Υ 选择使 μ(Φ,Υ) 满足

$$\min\{\sqrt{N}\max_{1 \le k, j \le N} | < \Phi_k, Y_j > | \}$$
(4)

值最小的矩阵 Φ ,即为最佳测量矩阵,且 Φ 满足正 交性 $\Phi^{T}\Phi = I_{\circ}$

若令 $\max_{1 \le k, j \le N} | < \Phi_k, Y_j > | = s$,使得 μ (Φ ,Y)最小 可转化为:

min s s. t.
$$\sqrt{N} \mid \langle \Phi_k, Y_j \rangle \mid \leq s$$
,
 $1 \leq k j \leq N A \Phi^T \Phi = I s \geq 1$ (5)

811

假定存在某一 $\Phi_k^* = (\varphi_{1k}^*, \varphi_{2k}^*, \dots, \varphi_{Nk}^*)^T$ $k = 1, 2, \dots$ N 是式(4) 的解 ,那么 $s^* = \sqrt{N} \max_{1 \le j \le N} |<\Phi_k, Y_j>|$,且 $s^* \ge \sqrt{N} |<\Phi_k, Y_j>|$ 即 s^* 也是式(5) 的解。

由于信道编码校验矩阵列向量之间满足线性 无关性,且通常可稀疏设计。因此,我们将把信道 编码中的校验矩阵用于压缩感知测量矩阵中,来设 计性能更加优越的确定性测量矩阵。利用校验空 间 *V* 中任意列向量都可用校验空间中的一组正交 基线性表示,获得压缩感知中性能优越的确定性测 量矩阵的构造方法。具体方法如下:

(1)利用信道编码中校验矩阵产生方法,如低 密度奇偶校验码的代数产生方法,获得一个大小 M ×N的二进制稀疏校验矩阵。

(2)将校验矩阵列向量进行归一化处理,得到标准正交基。由于 M×N 校验矩阵的秩为 M,则标准 正交基至少有 M 个线性无关向量 α₁ α₂,...α_M。

(3) 将 M 个线性无关向量来填充压缩感知测量矩阵中 Φ 中前 M 个列向量 ,即:

 $[\phi_1 \ \phi_2 \ ; \cdots \ \phi_M] = [\alpha_1 \ \alpha_2 \ ; \cdots \alpha_M]$ (6)

测量矩阵中剩余列向量 $\phi_{M+1} \phi_{M+2} \dots \phi_N$ 可通 过前 *M* 列的线性组合表示 即

 $\phi_{M+1} = k_{M+1,1}\phi_1 + k_{M+1,2}\phi_2 + \dots + k_{M+1,M}\phi_M$ $\phi_{M+2} = k_{M+2,1}\phi_1 + k_{M+2,2}\phi_2 + \dots + k_{M+2,M}\phi_M$

 $\phi_N = k_{N,1} \phi_1 + k_{N,2} \phi_2 + \dots + k_{N,M} \phi_M$ (7) 由于测量矩阵 Φ 的前 *M* 个列向量是直接引用标准 正交基,所以测量矩阵的前 *M* 列向量之间一定会线 性无关。剩余列向量 $\phi_{M+1} \phi_{M+2} \dots \phi_N$ 的选择存在 以下准则:

 $①\phi_{\scriptscriptstyle M+1}$, $\phi_{\scriptscriptstyle M+2}$,..., $\phi_{\scriptscriptstyle N}$ 与 ϕ_1 , ϕ_2 ,..., $\phi_{\scriptscriptstyle M}$ 之间的 关系

为了使 $\phi_{M+1} \phi_{M+2} \dots \phi_N = \phi_1 \phi_2 \dots \phi_M$ 之间 的线性相关性最小 最理想情况是使 $\phi_{M+1} \phi_{M+2} \dots$, ϕ_N 中任意一个向量与 $\phi_1 \phi_2 \dots \phi_M$ 中任意 *M*-1 个 向量线性无关 即正交基系数 $k_{j,1} k_{j,2} \dots k_{j,M} (j=M+1, \dots, N)$ 全部为非零实数。

 $②\phi_{M+1} \phi_{M+2} \dots \phi_N$ 内部之间的关系

由①可知 即使 $k_{j,1}, k_{j,2}, \dots, k_{j,M}$ ($j = M+1, \dots, N$) 全部为非零实数也只能保证 $\phi_{M+1}, \phi_{M+2}, \dots, \phi_N$ 与 $\phi_1, \phi_2, \dots, \phi_M$ 中任意 M-1 个向量线性无关,但无法 保证 $\phi_{M+1}, \phi_{M+2}, \dots, \phi_N$ 间的非线性。现通过选择系 数 $k_{j,1}, k_{j,2}, \dots, k_{j,M}$ ($j = M+1, \dots, N$) 的非零个数和系 数的伪随机性控制列向量 $\phi_{M+1}, \phi_{M+2}, \dots, \phi_N$,最终使 测量矩阵 Φ 的列向量之间满足 Donoho 提出的近似 非相干性的要求。

(4)为了使测量矩阵 Φ 与信号稀疏正交基之间
 的相关性降低 将测量矩阵列向量进行置换运算。

3 数值仿真

本节以一维信号和二维信号的压缩感知重建 过程,来验证本文所提出的确定性测量矩阵的性 能。由于无论是在信噪比还是相对误差方面,高斯 随机测量矩阵的重构效果要明显好于其他的测量 矩阵^[22] 因此,在数值仿真中我们将设计的确定性 测量矩阵的重建结果与同等条件下高斯测量矩阵 的重构效果进行比较。

以 Lena 图为数值仿真对象,仿真平台采用 Matlab2010a,Lena 图大小为 256×256,重建算法为正交 匹配追踪(OMP)算法,迭代次数为 50。分别选用 LDPC 码、BCH 码和汉明码的校验矩阵作为信道编 码校验矩阵,压缩比为 *M*/*N*=0.5。图1是不同测量 矩阵下 相同实验对象不同重建算法的仿真结果。

七类矩阵的重建结果与原始 Lena 图(1)的相对 误差分别为 0.0114、0.0182、0.0224、0.0207、0.0050、 0.0052、0.0051。这里验证随机测量矩阵(2)、(3)、 (4)、(5)的性能是运行 100 次再求平均值,而对确定 性测量矩阵(6)、(7)、(8)只需要运行 1 次即可。从 中可以看出,选择高斯随机、托普利兹、哈达玛、贝努 利作为测量矩阵时,重建的 Lena 图在视觉上几乎没 有太大的差异相对误差也在同一个数量级上,都非 常小。并且可以看出,以 LDPC 码校验矩阵、 Hamming 码校验矩阵和 BCH 码校验矩阵来构造的测 量矩阵的重建效果要比它们稍微好些,另外相对误 差的数量级也不一样。因此,所构造的测量矩阵具有 仿真时间少和视觉感官良好方面的优势。

表1进一步从峰值信噪比、相对误差、信噪比和匹 配度方面对以上几种测量矩阵的重建性能进行对比。

(5) 贝奴利	(6) LDPC	(7) Hamming	(8) BCH
(3) 25 25/13	(0) LDFC	(/) manning	(0) DUI

图 1 (1) 为原始 Lena 图; (2)、(3)、(4)、(5)、(6)、(7)、(8) 分别为高斯随机、托普利兹、哈达玛、 贝努利、LDPC 码校验矩阵、Hamming 码校验矩阵和 BCH 码校验矩阵的重构结果

Fig. 1 The reconstruction effect for(1) The original Lena; (2) (3) (4) (5) (6) (7) (8), respectively, for Gaussian random, Toeplitz, Hadamard, Bernoulli, and the code parity check matrix of LDPC, Hamming and BCH code

Tab.1 The performance of various types of measurement matrix for two-dimensional signal with compression ratio M/N=0.5					
矩阵名称/性能	峰值信噪比/dB	相对误差	信噪比/dB	匹配度%	
随机高斯	26.6632	0.0114	30.8757	0.9860	
托普利兹	24.6491	0.0182	27.8871	0.9805	
哈达玛	23.7315	0.0224	24.2751	0.9706	
贝努利	24.0751	0.0207	27.8935	0.9800	
LDPC 码校验矩阵	30.2818	0.0050	33.9835	0.9900	
Hamming 码校验矩阵	30.0733	0.0052	33.0088	0.9892	
BCH 码校验矩阵	30.2011	0.0051	34.1388	0.9906	

表1 压缩比 M/N=0.5,各类测量矩阵对二维信号的重建性能对比

结果表明,在相同重建算法和压缩比的情况 下,随机高斯测量矩阵的重建效果明显要好于其 他确定性测量矩阵,而我们所提出的确定性测量 矩阵能获得与随机测量矩阵获得的结果基本接 近甚至有所改善。同时,由于高斯随机测量矩阵 及其他的随机测量矩阵所固有的随机不确定性, 导致在硬件实现上存在困难,且其占用的物理存 储空间也较大,在实验仿真时要连续运行100次 取平均。但基于信道编码的确定性测量矩阵构 造时间较少,重建时运行1次即可,可以满足实 时性需要。

图 2-图5 分别给出了其与随机高斯测量矩 阵在峰值信噪比、信噪比、匹配度及相对误差之 间的比较结果。研究结果表明,基于信道编码的 测量矩阵相对于随机高斯测量矩阵在峰值信噪 比、信噪比、匹配度及相对误差上都有不同程度 的改进。当*M*/*N*≤0.1 时,在同样的低压缩比的 情况下重建效果都比较差,但是随着压缩比的不 断增加,由基于信道编码的测量矩阵对信号重建 的峰值信噪比和信噪比相对于其他随机测量矩 阵都有明显提高。

图 2 三种测量矩阵的信号重建峰值信噪比 PSNR 的分析曲线 Fig. 2 The analysis curve for the PSNR of the reconstruction using three measurement matrix

从图2可以看出,在压缩比*M/N*≤0.25的情况下,高斯随机测量矩阵与由LDPC码、汉明码、 BCH码构造的确定性测量矩阵之间的信号峰值 信噪比几乎一样,但是当压缩比*M/N*≥0.3时, 三类确定性测量矩阵明显要比高斯随机测量矩 阵的性能要好。

图 5 二种测量矩阵的后亏里建后喋几 SNR 的方桁曲线 Fig. 3 The analysis curve for the SNR of the reconstruction using three measurement matrix

Fig. 4 The analysis curve for the Relative_error of the reconstruction using three measurement matrix

从图 3、4 可以看出,在压缩比 *M*/*N* ≤ 0.25 的情况下,高斯随机测量矩阵与由 LDPC 码、汉 明码、BCH 码构造的确定性测量矩阵之间的信号 信噪比和相对误差几乎一样,但是当压缩比 *M*/*N* ≥0.3 时,三类确定性测量矩阵的信号信噪比和 相对误差明显要比高斯随机测量矩阵的信噪比 和相对误差要好。并且由下面的图 5 可以看出, 随着压缩比的增大,由前述方法构造的确定性测 量矩阵和高斯随机测量矩阵之间的性能差异也 很明显,信号之间的匹配度也要比随机高斯测量 矩阵高。

图 5 三种测量矩阵的信号重建匹配度 Mate-rate 的分析曲线

Fig. 5 The analysis curve for the MR of the reconstruction using three measurement matrix

4 结束语

论文根据确定性测量矩阵构造的基本条件,以 信道编码中的校验矩阵为基础,提出了一种性能优 越的确定性测量矩阵的构造方法。通过数值仿真, 验证了所提出方法的有效性。研究结果表明,在相 同重构算法和压缩比下,本文所提出的确定性测量 矩阵能获得与随机测量矩阵基本接近的结果,甚至 有所改善,明显要好于其他随机测量矩阵。同时, 由于高斯随机测量矩阵固有的随机不确定性,导致 它在硬件实现上困难,且其占用的物理存储空间也 较大,在试验仿真时要连续运行100次取平均。基 于信道编码的确定性测量矩阵构造时间较少,重建 时运行1次即可,可以满足实时性需要。由于基于 信道编码校验矩阵的确定性测量矩阵具有构造速 度快、需要的物理内存少、硬件易实现等,为压缩感 知算法的实际应用提供了一种有效的确定性测量 矩阵构造方法。

参考文献

- Candés E. Compressive sampling in Proceedings of international congress of mathematicians [A]. Zürich , Switzerland: European Mathematical Society Publishing House , 2006 , 1433–1452.
- [2] Baraniuk R. Compressive sensing [J]. IEEE Signal Processing Magzine, 2007, 24(4): 118–121.
- [3] Zhao Ruizhen , Liu Xiaoyu , Li Chingchung. Wavelet denoising via sparse representation [J]. Science in China Series , Feb , 2009 , 52(8) : 1371–1377.
- [4] Candès E , Romberg J and Tao T. Stable signal recovery from incomplete and inaccurate measurements [J]. Communications on Pure and Applied Mathematics ,2006 ,59 (8): 1207–1223.
- [5] 叶蕾,郭海燕,杨震.基于压缩感知重构信号的说话 人识别系统抗噪方法研究[J].信号处理,2010,26 (3):321-326.

Ye Lei, Guo Hai-Yan, Yang Zhen. Research on Antinoise Method of Speaker Recognition System Based on Compressed Sensing Reconstruction Signal [J]. Journal of Signal Processing, 2010, 26(3): 321-326. (in Chinese)

[6] Bajwa W, Haupt J, Sayeed A, et al. Compressive wireless sensing [A]. Proceedings of the 5th International Conference on Information Processing in Sensor Networks. New York: Association for Computing Machinery , 2006 , 134–142.

- [7] Lustig M , Donoho D , and Pauly J. Sparse MRI: the application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine , 2007 , 58: 1182–1195.
- [8] Goyal V, Fletcher A, and Rangan S. Compressive sampling and lossy compression [J]. IEEE Signal Process Magzine, 2008, 25(2): 48-56.
- [9] Baraniuk R , Davenport M , DeVore R , et al. A Simple Proof of the Restricted Isometry Property for Random Matrices [J]. Constructive Approximation , 2008 , 28 (3) : 253-263.
- [10] 张贤达. 矩阵分析与应用[M]. 北京:清华大学出版 社,2004.
 Zhang Xian-Da. Matrix Analysis and Applications [M].
 Beijing: Tsinghua University Press, 2004. (in Chinese)
- [11] DeVore R. Deterministic constructions of compressed sensing matrices [J]. Journal of Complexity, 2007, 23(4-6): 918-925.
- [12] 陈景良,陈向晖. 特殊矩阵[M]. 北京:清华大学出版 社 2001.
 Chen Jing-Liang, Chen Xiang-Hui. Special matrix [M].

Beijing: Tsinghua University Press, 2001. (in Chinese) [13] Holger R. Circulant and Toeplitz matrices in compressed

- sensing [J]. SPARS09, 2009, 2(13): 1124–1132.
- [14] Florian S, Leslie Ying, Yi-Ming Zhou. Toeplitz block matrices in compressed sensing [J]. Information Technology and Applications in Biomedicine, 2008:47-50.
- [15] Tropp J. Greed is good: Algorithmic results for sparse approximation [J]. IEEE Transactions on Information Theory , 2004 , 50(10) : 2231–2242.
- [16] Rauhut H, Schnass K, Vandergheynst P. Compressed sensingand redundant dictionaries [J]. IEEE Transactions on Information Theory, 2008, 54(5) : 2210–2219.
- [17] Ni K, Datta S, et al. Efficient deterministic compressed sensing for images with chirps and reed-muller codes [J]. SIAM Journal on Imaging Sciences, 2011, 4(3): 931–953.
- [18] Elad M. Optimized projections for compressed sensing
 [J]. IEEE Transactions on Signal Processing, 2007, 55 (12): 5695–5702.
- [19] Duarte-Carvajalino J , Sapiro G. Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization [J]. IEEE Transactions on Image Processing , 2009 ,18(7) : 1395-1408.
- [20] Abolghasemi V , Ferdowsi S , Sanei S. A gradient-based

alternating minimization approach for optimization of the measurement matrix in compressive sensing [J]. Signal Processing , 2012 , 92(3) : 999–1009.

- [21] Donoho D. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4):1289–1306
- [22] 方红 章权兵,韦穗.基于亚高斯随机投影的图像重建 方法[J]. 计算机研究与发展 2008,45(8):1402-1407.
 Fang Hong, Zhang Quan-Bing, Wei Sui. A Method of Image Reconstruction Based on Sub-Gaussian Random Projection [J]. Computer Research and Development, 2008,45(8):1402-1407. (in Chinese)

作者简介

董小亮 男(汉族),1982年生,吉林 辽源人。南京邮电大学博士研究生,目前 主要研究方向为量子信息技术。 E-mail: dxl999@163.com

杨良龙 男(汉族),1987年生,安徽 安庆人。南京邮电大学硕士研究生,目前 主要研究方向为压缩感知及其在关联鬼 成像中的应用。

E-mail: 1010010546@ njupt. edu. cn

赵生妹 女(汉族),1968 年生,江苏 丹徒人。南京邮电大学信号处理与传输 研究院教授,博士生导师。目前主要研究 方向为量子信息技术、无线通信与信号处 理技术。E-mail: zhaosm@ njupt. edu. cn

郑宝玉 男(汉族),1945年生,福建 闽侯人。南京邮电大学信号处理与传输研 究院教授,博士生导师,上海交通大学兼职 教授、博士生导师,目前主要研究方向为无 线通信与信号处理、智能信号处理、量子信 息处理等。E-mail:zby@ njupt.edu.cn