文章编号: 1003-0530(2024)02-0356-08

双智能反射面辅助的上行链路通信调度分析

柳 翠 芮贤义*

(苏州大学电子信息学院,江苏苏州215006)

摘 要:本文旨在研究一种基于双智能反射面(Intelligent Reflecting Surface, IRS)辅助的上行链路多用户通信方案,以提高用户的信息传输速率。研究提出了一种合作式被动波束成形技术,作为新型的IRS反射波束成形技术。 与传统的被动波束成形技术不同的是,合作式被动波束成形技术允许不同的IRS之间进行协作,能够进一步提高系统性能。通过联合优化基站(Base Station, BS)处的接收波束成形和两个分布式IRS(分别部署在BS和用户附近) 处的合作式反射波束成形,本研究能够最大化用户的信息传输速率。仿真实验的结果展示了基于双IRS辅助的多 用户调度通信系统在最大化信息传输速率方面的显著优势。此外,本文量化比较了我们的方案与现有类似方案的 性能改进。仿真结果表明,相较于现有方案,本系统在提高信息传输速率方面有显著的性能提升。特别是在用户 数量较大时,双IRS合作系统可以更好地克服路径损耗和多路径干扰,进一步提高系统的性能表现。本研究的创新 点总结如下:1)提出了合作式被动波束成形技术作为一种新型的IRS反射波束成形技术,具有重要的理论和实用价 值;2)通过联合优化基站处的接收波束成形和两个分布式IRS处的合作式反射波束成形技术,具有重要的理论和实用价 值;2)通过联合优化基站处的接收波束成形和两个分布式IRS处的合作式反射波束成形技术,真有重要的更流了 数量较大时,3)在仿真实验中展示了基于双IRS辅助的多用户调度通信系统在最大化信息传输速率方面的显著优 越性。本研究不仅为IRS辅助通信技术的推广提供了有益的参考,也为未来智能无线通信系统的发展提供了重要 的支持。同时,也为IRS辅助用户调度技术的发展提供了新的思路和方法。

关键词:智能反射面;多用户调度;上行链路;信息传输速率;联合波束成形 中图分类号:TN925 文献标识码:A DOI: 10.16798/j.issn.1003-0530.2024.02.013

引用格式:柳翠,芮贤义.双智能反射面辅助的上行链路通信调度分析[J].信号处理,2024,40(2):356-363.DOI: 10.16798/j.issn.1003-0530.2024.02.013.

Reference format: LIU Cui, RUI Xianyi. Uplink communication scheduling analysis with assistance of dual intelligent reflecting surfaces[J]. Journal of Signal Processing, 2024, 40(2): 356-363. DOI: 10.16798/j.issn.1003-0530.2024. 02.013.

Uplink Communication Scheduling Analysis with Assistance of Dual Intelligent Reflecting Surfaces

LIU Cui RUI Xianyi*

(School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu 215006, China)

Abstract: This study investigated a multi-user communication scheme for uplink channels that used intelligent reflecting surfaces (IRSs). This scheme made it possible to fully exploit the beamforming gain of the IRSs and improve the information transmission rate to users. A cooperative passive beamforming technique was investigated as a novel IRS beamforming technology. Unlike traditional passive beamforming techniques, the cooperative passive beamforming technique allows collaboration among different IRS elements, thereby further enhancing the system performance. The users' information transmission rate is maximized by jointly optimizing the receive beamforming at the base station (BS) and coop-

收稿日期: 2023-05-08; 修回日期: 2023-06-15

^{*}通信作者: 芮贤义 xyrui@suda.edu.cn *Corresponding Author: RUI Xianyi, xyrui@suda.edu.cn

基金项目:国家自然科学基金(61201213,62071319)

Foundation Items: The National Natural Science Foundation of China (61201213, 62071319)

erative reflective beamforming at two distributed IRS elements (deployed near the BS and users). Simulation results demonstrated the significant advantages of a multi-user scheduling communication system assisted by dual IRSs in maximizing the information transmission rate. Furthermore, this paper quantitatively evaluates the performance improvement provided by our proposed solution compared with similar existing approaches. The simulation results showed a significant performance enhancement in terms of improving the information transmission rate compared to existing solutions. In particular, the cooperative system with dual IRSs exhibited better resilience against path loss and multipath interference, thereby further enhancing the system performance, especially with a large number of users. The innovative contributions of this research can be summarized as follows: 1) proposing cooperative passive beamforming as a novel IRS beamforming technology with significant theoretical and practical value; 2) maximizing the performance of a multi-user communication system through joint optimization of the receive beamforming at the base station and cooperative reflective beamforming at two distributed IRS elements; 3) demonstrating the significant advantages of a multiuser scheduling communication system assisted by dual IRSs in maximizing the information transmission rate through simulation experiments. This research not only provides valuable references for promoting IRS-assisted communication technology but also offers significant support for the development of future intelligent wireless communication systems. Addition-ally, it provides new ideas and methods for the development of IRS-assisted user scheduling techniques.

Key words: intelligent reflecting surface; multi-user scheduling; uplink link; information transfer rate; joint beamforming

1 引言

随着移动互联网、物联网等技术的发展,无线 通信系统的需求越来越大。用户对高速、高质量的 数据传输的要求不断增加,提高信息传输速率已经 逐渐成为无线通信系统中的一个重要问题。为此, 学术界和工业界一直在探索各种技术来提高无线 通信系统的传输速率和容量。其中,使用智能反射 面(Intelligent Reflecting Surface, IRS)作为无线通 信系统的辅助设计引起了广泛的关注^[1-2]。IRS是 由大量反射单元组成的一种被动元件,可以改变电 磁波的相位和振幅,从而控制电磁波的传播,用于 控制信号的波束形成,改善信号的强度和信噪比, 以及抑制多径衰落等^[3]。例如,Wu等人^[4]研究了一 种使用 IRS 增强的点对点多输入单输出(MISO)无 线系统,其中部署了一个IRS来协助多天线接入点 (AP)与单天线用户之间的通信,通过联合优化AP 的主动发射波束成形和IRS的被动反射波束成形, 旨在最大化用户接收到的总信号功率。他们首先 提出了一种基于半定松弛(SDR)技术的集中式算 法,假设IRS具有全局信道状态信息(CSI)。然而, 由于集中式实现需要大量的信道估计和信号交换 开销,因此进一步提出了一种低复杂度的分布式算 法。分布式算法中,AP和IRS独立地调整发射波束 成形和相位调整,直到达到收敛。仿真结果表明, 与基准方案相比,所提出的算法能够实现显著的性 能提升。他们的实验证实使用IRS相较传统设置能 够显著提高链路质量和覆盖范围。类似地, IRS 还 被广泛研究和应用于无线通信系统中,以提高通信

速率和容量[5-7]。

现有的IRS研究主要集中在被动波束成形设计 和性能优化,例如通过调整IRS的反射相位和振幅 来实现波束成形[8-10]。在单一天线系统中,波束成 形技术可以通过改变天线辐射图的形状来实现信 号传输的指向性。然而,对于多用户的情况,天线 的指向性不能很好地满足用户间的信号隔离要 求^[11-13]。因此,近年来智能反射面(IRS)技术在多用 户调度上的应用逐渐受到研究者的关注。但是,现 有研究通常只考虑了单个 IRS 的情况,并且没有考 虑反射面之间的信号反射。目前,众多研究已在多 IRS辅助通信系统领域取得了显著进展。不少研究 者认为可以部署双IRS分布在建筑物表面,以协助 发射器向接收器传输自己的信号,并通过IRS的被 动波束成形改善信号传播。文献[14]提出了一种 针对双IRS辅助的多用户MIMO系统的有效上行 链路信道估计方案,通过最大化反射信号功率和利 用级联CSI的低维缩放版本,实现了最小化训练时 间和开销的信道估计方法。此外,还有一些研究考 虑了多IRS辅助下的多用户波束成形问题,例如 HAO 等人^[15]提出了双 IRS 辅助的多用户 MIMO 通 信系统,通过联合接收和协同反射波束形成优化, 实现了显著的性能增益。在该信道模型中,从MT 发射的一部分信号在到达MR之前会反射到靠近发 射器的 IRS 或靠近接收器的 IRS 上。一些信号从 MT发射出来后,会射到集群上,然后再到达MR。 文章研究了双 IRS MIMO 信道传播特性,即空时 (ST)交叉相关函数(CCF),针对不同数量和布局的 IRS单元格以及IRS的方向角进行了研究。但是这 些研究通常集中在优化波束成形权重矩阵,以最大 化多用户之间的通信速率。然而,尽管现有研究在 多IRS辅助通信系统领域取得了显著进展,但它们 通常没有考虑到多用户调度下的多IRS与用户侧的 功率分配和波束成形的联合优化问题。在多用户 场景中,用户间的干扰和信号隔离问题变得更加复 杂,需要综合考虑功率分配和波束成形策略,以实 现更高的系统性能。

同时,缺乏对用户侧的功率分配策略的考虑也可能导致传输性能的损失。因此,在多用户调度下,必须进行多个IRS与用户侧功率分配和波束成形的联合优化,以充分发挥多个IRS的协同优势,最大化系统的传输速率和容量。

本文的研究工作将聚焦于多用户调度下的多 IRS系统。我们旨在提出一种联合优化多个IRS的 反射系数、基站的发射波束成形以及用户侧的功率分 配的算法,以实现系统速率的最大化。通过在多个 IRS之间实现协同波束成形和优化功率分配,我们可 以进一步提高系统的抗干扰性能和用户的传输速率。

具体来说,为了解决多用户调度下的多IRS与 用户侧功率分配和波束成形的联合优化问题,本文 提出了一个双智能反射表面(IRS)辅助的上行多用 户调度系统。该系统采用了被动波束成形设计,将 多个IRS之间的协同作用融入系统的优化过程中。 在该系统中,优化问题是联合优化两个IRS的反射 系数以及基站端的发射波束成形,在满足约束条件 的同时最大化系统的传输速率。具体而言,我们考 虑了反射系数和发射波束成形权重的联合调整,以 实现多个IRS之间的协同优化。通过调整反射系 数,每个IRS可以调整反射信号的相位和振幅,从而 对信号进行精确的波束成形。同时,基站也可以优 化发射波束成形权重,以最大化用户接收到的总信 号功率。通过仿真实验,本文评估了该优化算法在 双IRS多用户调度模型中的性能表现。结果显示, 该算法能够显著提升用户的传输速率。通过联合 优化多个IRS的反射系数和基站的发射波束成形, 系统能够更好地控制信号的传播和干扰,从而提高 用户的传输质量和速率。

2 系统和信道模型

2.1 系统模型

如图1所示,本文考虑一个点对点单输入多输 出(SIMO)无线系统,其中包括一个配备了M个天 线的基站(BS)和K个单天线用户。为了提高链路 的性能,在周围安装了两个分别由N₁,N₂个无源元 件组成的智能反射面(IRS),用于协助用户-BS上行 链路的通信功率传输。与现有的IRS技术相比,本 文提出的创新之处在于双IRS的协同辅助方式。每 个IRS配备了一个智能控制器,能够通过对传播环 境的周期性感知学习,并动态调整每个反射元件的 相移。具体而言,IRS控制器协调两种工作模式之 间的切换:接收模式用于环境感知(如CSI估计),而 反射模式用于散射来自基站的入射信号。本文假 设受到IRS反射两次及以上的信号功率可以忽略不

Fig. 1 Multi-User Communication System with Dual IRS-Assisted Cooperative Technique

计,因为存在显著的路径损耗。此外,我们采用准静态的平面衰落信道模型来描述所考虑的系统设置。虽然我们关注的是从AP到用户的上行通信,但结果也适用于下行链路。考虑到IRS是一种被动反射设备,本文采用时分双工协议用于上行和下行传输,并利用信道互易性在两个链路方向上获取IRS的信道状态信息(CSI)。

用户-AP链路,用户-IRS链路,IRS-AP链路分别 用 $h_{a,k}^{H} \in \mathbb{C}^{1\times M}$, $h_{r,k}^{H} \in \mathbb{C}^{1\times N_{r}}$, $G_{1,k} \in \mathbb{C}^{M\times N_{1}}$, $G_{2,k} \in \mathbb{C}^{M\times N_{2}}$ 表示,上标H表示共轭转置操作。两个IRS之间的通信链路用H表示, $H \in \mathbb{C}^{N_{1}\times N_{2}}$ 。然后,复合用户-IRS-AP信道可以表示为三个链路的串联,即用户-IRS链路,带相位反射的IRS和IRS-AP链路。它不同于传统的AF中继信道,因为中继不仅放大其接收的源信号,而且放大其自己的接收噪声,并将放大的信号转发到目的地。在本文中,在BS处接收到的用户k的信号可以表示为

 $y_{k} = f_{k}^{H} (h_{d,k} + G_{1,k} \Phi_{1,k} h_{1,k} + G_{2,k} \Phi_{2,k} h_{2,k} + G_{1,k} \Phi_{1,k} H \Phi_{2,k} h_{2,k}) x_{k} + f_{k}^{H} n$ (1)

其中 $f_k \in \mathbb{C}^{M \times 1}$,对BS处接收到的信号进行波束成 形,即有 $\|f_k\|^2 = 1$ 。其中 x_k 是用户k的发射信号,有 $E[|x_k|^2] = 1$ 。 $n \sim CN(0, \sigma^2 I_m)$ 为加性高斯白噪声 (AWGN), $n \in \mathbb{C}^{M \times 1}$ 。由此可得BS处用户k信号的 速率为

$$R_{k} = \frac{\left| f_{k}^{H}(\boldsymbol{h}_{d,k} + \boldsymbol{G}_{1,k}\boldsymbol{\Phi}_{1,k}\boldsymbol{h}_{1,k} + \boldsymbol{G}_{2,k}\boldsymbol{\Phi}_{2,k}\boldsymbol{h}_{2,k} + \boldsymbol{G}_{1,k}\boldsymbol{\Phi}_{1,k}\boldsymbol{H}\boldsymbol{\Phi}_{2,k}\boldsymbol{h}_{2,k}) \right|^{2}}{\sigma^{2}}$$
(2)

2.2 数学模型

在实际应用中,所提出的系统可被应用于无线 功率或信息传输。在前一种情况下,收集的能量通 常被建模为信息传输速率R的凹形和递增函数。在 后一种情况下,信息可达率是信息传输速率的对数 函数,它也随着R的增加而增加。因此,在AP的最 大传输功率约束下,通过联合优化传输波束形成 f_k 和相移 $\boldsymbol{\Phi}_{1,k}$ 、 $\boldsymbol{\Phi}_{2,k}$ 来最大化信息传输速率,即相应的 优化问题可以表述为

(P1):
$$\max_{f_{k}, \Phi_{1k}, \Phi_{2k}} R_{k}$$

s.t. $\| f_{k} \|^{2} = 1$,
 $0 \leq \theta_{n_{1}} \leq 2\pi, \forall n_{1} = 1, \dots, N_{1},$
 $0 \leq \theta_{n_{2}} \leq 2\pi, \forall n_{2} = 1, \dots, N_{2}$ (3)

虽然所有的约束都是凸的,但由于问题(P1)是

非凸的,因此该问题是一个非凸优化问题。一般来 说,没有标准的方法来最优地求解这类非凸优化问 题。接下来本文将使用一个分布式算法,应用交替 优化技术来求解。

3 联合优化设计算法

为了便于实现,本节提出了一种基于交替优化的低复杂度分布式算法。具体地说,AP的发射波 束形成*f*_{*}和两个IRS的相移*Φ*_{1.*},*Φ*_{2.*}以交替的方式 进行迭代优化,每次迭代中固定一个,直到收敛或 最大迭代次数。值得指出的是,交替优化本身并不 一定意味着分布式实现,而利用我们制定问题的特 殊结构,使我们能够避免 AP和IRS之间的信道反 馈/信号交换,也降低了信道估计的复杂度。我们首 先提出了基于交替优化的求解方法如下。

对于任何给定的相移θ,可以验证最大比传输 (MRT)是问题(P1)的最优传输波束形成解决方 案^[16],即

 $f^* = \sqrt{\frac{n}{n}}$

$$\frac{\left(\boldsymbol{h}_{d,k} + \boldsymbol{G}_{1,k}\boldsymbol{\Phi}_{1,k}\boldsymbol{h}_{1,k} + \boldsymbol{G}_{2,k}\boldsymbol{\Phi}_{2,k}\boldsymbol{h}_{2,k} + \boldsymbol{G}_{1,k}\boldsymbol{\Phi}_{1,k}\boldsymbol{H}\boldsymbol{\Phi}_{2,k}\boldsymbol{h}_{2,k}\right)^{\mathrm{H}}}{\left\|\boldsymbol{h}_{d,k} + \boldsymbol{G}_{1,k}\boldsymbol{\Phi}_{1,k}\boldsymbol{h}_{1,k} + \boldsymbol{G}_{2,k}\boldsymbol{\Phi}_{2,k}\boldsymbol{h}_{2,k} + \boldsymbol{G}_{1,k}\boldsymbol{\Phi}_{1,k}\boldsymbol{H}\boldsymbol{\Phi}_{2,k}\boldsymbol{h}_{2,k}\right\|} \\ \triangleq \boldsymbol{f}_{k}\mathrm{MRT} \qquad (4)$$

对于任意给定的发射波束形成**f**_k,P1的目标函数满足以下不等式:

$$\left| f_{k}^{H} (h_{d,k} + G_{1,k} \boldsymbol{\Phi}_{1,k} h_{1,k} + G_{2,k} \boldsymbol{\Phi}_{2,k} h_{2,k} + G_{1,k} \boldsymbol{\Phi}_{1,k} H \boldsymbol{\Phi}_{2,k} h_{2,k} \right| = \left| f_{k}^{H} h_{d,k} + f_{k}^{H} G_{1,k} \boldsymbol{\Phi}_{1,k} h_{1,k} + f_{k}^{H} G_{2,k} \boldsymbol{\Phi}_{2,k} h_{2,k} \right| = \left| f_{k}^{H} h_{d,k} + f_{k}^{H} G_{1,k} \boldsymbol{\Phi}_{1,k} h_{1,k} + f_{k}^{H} G_{2,k} \boldsymbol{\Phi}_{2,k} h_{2,k} \right| \leq f_{k}^{H} h_{d,k} + \left| f_{k}^{H} G_{1,k} \boldsymbol{\Phi}_{1,k} h_{1,k} \right| + \left| f_{k}^{H} G_{2,k} \boldsymbol{\Phi}_{2,k} h_{2,k} \right| + \left| f_{k}^{H} G_{1,k} \boldsymbol{\Phi}_{1,k} H \boldsymbol{\Phi}_{2,k} h_{2,k} \right|$$

$$(5)$$

其中 $f_k^{H}h_{dk}$ 和 $G_{1,k}\Phi_{1,k}H\Phi_{2,k}h_{2,k}$ 均为常数项。当且仅 当arg($f_k^{H}h_{dk}$) = arg($G_{1,k}\Phi_{1,k}h_{1,k}$) = arg($G_{2,k}\Phi_{2,k}h_{2,k}$) = arg($G_{1,k}\Phi_{1,k}H\Phi_{2,k}h_{2,k}$) = φ_0 时,式(5)中的等式才成 立,其中arg()表示复向量的分量相位。接下来,证 明总是存在一对解 $\Phi_{1,k},\Phi_{2,k}$,满足(5)相等以及(3) 中的相位约束。这里可以看出 $\Phi_{1,k},\Phi_{2,k}$ 耦合在一 起,没有办法同时进行处理。因此我们需要分两步 对他们进行优化。

首先我们对 $\boldsymbol{\sigma}_{1,k}$ 进行处理,通过忽略常数项 $\left| \boldsymbol{f}_{k}^{\mathrm{H}} \boldsymbol{h}_{d,k} \right|$ 和无关项 $\left| \boldsymbol{f}_{k}^{\mathrm{H}} \boldsymbol{G}_{2,k} \boldsymbol{\sigma}_{2,k} \boldsymbol{h}_{2,k} \right|$,可以通过应用变 量 $\boldsymbol{f}_{k}^{\mathrm{H}} \boldsymbol{G}_{1,k} \boldsymbol{\sigma}_{1,k} \boldsymbol{h}_{1,k} = \boldsymbol{v}_{1}^{\mathrm{H}} \boldsymbol{a}_{1}$,其中 $\boldsymbol{v}_{1} = \left[e^{j\theta_{1}} \cdots e^{j\theta_{N_{1}}} \right]^{\mathrm{H}}$, $\boldsymbol{a}_{1} =$ (6)

(7)

 $f_k^{\mathrm{H}}G_{1k}$ diag(h_{1k});将问题(P1)简化为 (P1'): $\max_{v_1} |v_1^H a_1|$ s.t. $|\boldsymbol{v}_{n_1}| = 1, \forall N = 1, \dots, N_1,$ $\arg(\boldsymbol{v}_1^{\mathrm{H}}\boldsymbol{a}_1) = \varphi_0$ 可以证明问题的最优解(P1')是由 v1*=

 $e^{j(\varphi_0 - \arg a_1)} = e^{j(\varphi_0 - \arg(f_k^{H}G_{L,k} \operatorname{diag}(h_{L,k})))}$ 给出的。因此,在IRS1处 对应的第n₁个相移由式(7)给出 $\theta_{n,}^* = \varphi_0 - \arg(f_k^{H}g_{n,h_{n,r}}^{H}) = \varphi_0 - \arg(f_k^{H}g_{n,h_{n,r}}^{H}) - \arg(h_{n,r}^{H})$

其中 h_n^{H} ,是 h_r^{H} 的第 n_1 个元素, g_n^{H} 是 G_{1k} 的第 n_1 行向 量。注意, $f_{\mu}^{\mu}g_{\mu}^{\mu}$ 结合了发射端的波束成形和 AP-IRS1信道,因此可以被视为IRS1中第n,个反射元 素感知到的等效信道。同时式(7)可以看出若要实 现最优解,IRS1的第n,个相移的设置应该满足以下 条件:通过AP-IRS1和IRS1-用户链路的信号相位 与AP-用户直接链路的信号相位对齐。此外,值得 注意的是,所得到的相位 θ_n^* 与 $h_{n,r}$ 的振幅无关。

接下来我们再处理 $\boldsymbol{\phi}_{,\iota}$,其优化步骤与IRS1完 全一致。同样地,忽略常数项 $|\mathbf{f}_{k}^{H}\mathbf{h}_{dk}|$ 和无关项 $|f_k^{\mathrm{H}}G_{1,k}\boldsymbol{\Phi}_{1,k}h_{1,k}|$,应用变量 $f_k^{\mathrm{H}}G_{2,k}\boldsymbol{\Phi}_{2,k}h_{2,k}=v_2^{\mathrm{H}}a_2$,其中 $v_2 = \left[e^{j\theta_1} \cdots e^{j\theta_{x_2}}\right]^{H}, a_2 = f_k^H G_{2,k} \operatorname{diag}(h_{2,k}); 得到问题 P1"$ (P1''): $\max_{v_2} |v_2^H a_2|$ s.t. $|\mathbf{v}_{n_1}| = 1, \forall N = 1, \dots, N_2,$ $\arg(\mathbf{v}_2^{\mathrm{H}}\mathbf{a}_2) = \varphi_0$ (8)

可以证明问题(P1")的最优解是由 $v_2^* = e^{i(\varphi_0 - \arg a_2)} =$ $e^{j(\varphi_0 - \arg(f_k^{H}G_{2k}))}$ 给出的。因此,在IRS2处对应的第 n。个相移由式(9)给出

$$\theta_{n_2}^* = \varphi_0 - \arg(\boldsymbol{f}_k^{\mathrm{H}} \boldsymbol{g}_{n_2}^{\mathrm{H}} \boldsymbol{h}_{n_2,r}^{\mathrm{H}}) = \\ \varphi_0 - \arg(\boldsymbol{f}_k^{\mathrm{H}}) - \arg(\boldsymbol{g}_{n_2}^{\mathrm{H}} \boldsymbol{h}_{n_2,r}^{\mathrm{H}})$$
(9)

同样地,其中 $h_{n,r}^{H}$ 是 h_{r}^{H} 的第 n_{2} 个元素, g_{n}^{H} 是 G_{2k} 的第 n_2 行向量。注意, $f_k^{\scriptscriptstyle H}g_n^{\scriptscriptstyle H}$ 结合了发射端的波束成 形和AP-IRS2信道,因此可以被视为IRS2中第 n_2 个 反射元素感知到的等效信道。同时式(9)可以看出 为实现最优解,IRS2的第n2个相移的设置应该满足 下面条件:通过AP-IRS2和IRS2-用户链路的信号 相位与通过AP-用户直接链路的信号相位对齐。同 样值得注意的是,所得到的相位 θ_{n}^{*} 与 $h_{n,r}$ 的振幅无 关。最后,我们用给定的 $\theta_n^*, \theta_n^*,$ 优化波束成形 f_k^{H} 。 在表1中详细给出了实现上述交替优化的分布式算 法的步骤。

表1 算法步骤 Tab. 1 Steps of the algorithm

步骤	具体内容
输入	$k, N_1, N_2, \boldsymbol{h}_{1,k}, \boldsymbol{h}_{2,k}, \boldsymbol{h}_{d,k}, \boldsymbol{G}_1, \boldsymbol{G}_2, \boldsymbol{H}, \sigma^2, \boldsymbol{p}_k, \varepsilon \not \exists l L_{\max}$
输出	$oldsymbol{f}_k,oldsymbol{\Phi}_{1,k}$ 和 $oldsymbol{\Phi}_{2,k}$
1	初始化 $\Phi_{1,k}^{(0)}$ 和 $\Phi_{2,k}^{(0)}$ 设置 $m=1$;
2	重复:
3	给定
4	给定 $\Phi_{2,k}^{(m-1)}$ 和 $f_k^{(m)}$,根据式(2)优化 $\Phi_{1,k}^{(m)}$;
5	给定 $\Phi_{1,k}^{(m)}$ 和 $f_k^{(m)}$,根据式(3)优化 $\Phi_{2,k}^{(m)}$;
6	更新 <i>m=m</i> +1;
7	直到P1中的目标值低于阈值 $\varepsilon > 0$,或 $m = L_{max}$ 。

4 仿真结果与性能分析

本节通过仿真实验对提出的方案进行性能分 析。本文假设AP-IRS信道由LoS链路主导,因此相 应的信道矩阵G的秩为1,其中行/列向量是线性相 关的。然而,考虑到用户的移动性和复杂的传播环 境(如室内),将独立瑞利衰落和IRS用户信道的路 径损耗指数设置为3。在本研究中,我们使用AP的 信息传输速率作为性能度量指标,并考虑一个信息 传输场景。在仿真中, AP和用户的天线增益均为 0 dBi, 而 IRS 处各反射元件的天线增益均为5 dBi。 其他所需参数参考文献 [17], 设置如下: $\varepsilon = 10^{-4}$, $\sigma^2 =$ $-90 \,\mathrm{dBm}_{\mathrm{s}}\bar{p} = 5 \,\mathrm{dBm}_{\mathrm{s}}L_{\mathrm{max}} = 40_{\mathrm{o}}$

在仿真过程中采用了不同的用户调度方法,包 括遍历(Transverses)、距离(Distance)、信道质量 (Channel quality)、轮询(Round-Robin)等。这些用 户调度方法的选择将直接影响所提出的联合设计 方法的性能表现^[18]。不同的用户调度方法具有不 同的优缺点,它们的选择将直接影响所提出的联合 设计方法的性能表现。仿真中考虑了多个影响因 素,如IRS反射单元数量、基站天线数量、用户数量、 用户区域半径等,并对每种影响因素进行了分析。

4.1 计算复杂度分析

在本节中,我们将对双智能反射面(IRS)辅助 的上行链路通信调度方案的计算复杂度进行详细 分析。复杂度的计算主要集中在涉及复数乘法的 三个步骤中。算法方案的复杂度主要源于求解欧 几里得梯度的过程。首先,针对步骤3,计算复数乘 法的次数的复杂度为O(M²),其中M表示涉及的复 数的数量。在该步骤中,本文执行了多次复数乘法 操作,因此复杂度与复数数量的平方成正比。步骤 4和步骤5这两个步骤中,涉及到的计算主要是基于矩阵运算和计算向量的范数。对于步骤4,其复杂度为O(N₁²),其中N₁表示涉及的矩阵的维度。类似地,步骤5的复杂度为O(N₂²),其中N₂表示另一个涉及的矩阵的维度。这些复杂度与涉及的矩阵维度的平方成正比。

假设我们进行L次迭代,则算法的整体复杂度 为 $O[L(M^2 + N_1^2 + N_2^2)]$ 。这表示在L次迭代的过 程中,我们需要考虑步骤3、步骤4和步骤5的复杂 度。总的计算复杂度取决于迭代次数L以及涉及的 复数和矩阵的数量和维度。

即:复杂度计算:计算复数的乘法次数 步骤3:O(M²) 步骤4:O(N₁²) 步骤5:O(N₂²) 假设迭代次数:L次 算法复杂度O[L(M²+N₁²+N₂²)]

4.2 IRS 反射单元总数目与传输速率的关系

图2展示了IRS反射单元数对系统信息传输速率的影响。根据仿真结果,随着IRS反射单元总数的增加,信息传输速率逐渐增加。这是因为更多的IRS反射单元提供了更多的反射链路,增加了能量和信息传输的机会。此外,遍历调度方法在多种调度方案中表现略优,因为遍历调度方法能够更好地利用多个IRS反射单元进行通信。当有两个IRS均参与通信时,信息传输速率均高于只有一个IRS参与通信的情况,而且离基站端较近的IRS可以实现更高的信息传输速率。因此,合理的IRS布置方式和用户调度方法可以有效提高信息传输速率。

4.3 基站天线数与传输速率的关系

图3显示了基站天线数*M*与系统信息传输速率 呈正相关关系。结果显示,基站天线数与信息传输 速率呈正相关关系。随着*M*的增加,IRS可以为基 站和无线设备之间能量和信息传输提供更多的反 射链路,从而使系统的信息传输速率增加。遍历调 度方法在各种调度方案中表现最佳,略优于信道质 量调度和距离调度方法,而轮询调度方案的性能最 差。这是因为遍历调度方法能够更好地利用多个 基站天线和IRS反射单元进行通信。

4.4 用户个数与传输速率的关系

图4展示了无线用户数量K对多用户通信系统 信息传输速率的影响。结果表明,随着无线用户数 量K的增加,系统信息传输速率也随之增加。这是

Fig. 4 Number of Users vs. Information Transmission

Rate Curve

因为无线设备所能收集的信号能量随着设备数量 的增多而增加,从而提高了系统信息传输速率。同 时,遍历调度方法在所有用户数量下表现出最佳性 能,并且其优势逐渐扩大。轮询调度方法不随用户 数量的增加而改善,其曲线趋于平稳。这是因为轮 询调度方法没有考虑到用户的空间分布信息,无法 有效利用多个天线和反射单元进行通信。

4.5 用户区域半径与信息传输速率的关系

从图5可知,随着用户区域半径的增大,系统信息传输速率也随之增加。这是因为用户区域半径的增大增加了覆盖范围,使得更多的用户能够受益于多个基站天线和IRS反射单元的通信。然而,轮询调度方法的性能并没有得到明显的提高,甚至略有下降。这是因为轮询调度方法没有充分考虑用户的空间分布,无法有效地利用多个天线和反射单元进行通信。

Fig. 5 User Area Radius vs. Information Transmission Rate Curve

通过对图2至图5的定量分析,我们可以进一步理解所提出的方案对系统性能的改进。在不同 情况下,合理的IRS布置方式和用户调度方法可以 充分利用多个天线和反射单元,提高信息传输速 率。这验证了所提算法的有效性,并展示了其在理 论上的创新贡献。

5 结论

本文主要研究了基于双智能反射表面(IRS)辅助通信的上行链路多用户调度问题,并提出了一种联合用户调度和被动波束成形设计的方法,旨在最大化无线通信系统的信息传输速率。该模型对上行链路中多个用户进行调度,接着再对双IRS进行

波束成形设计。通过采用低复杂度的分布式迭代 算法,联合优化用户侧的功率分配和波束成形,以 及基站和IRS的被动波束成形,实现了系统性能的 优化。实验结果验证了所提出方法在多用户上行 调度模型中的适用性,并展示了双IRS合作系统在 最大化信息传输速率和提高多用户有效信道秩方 面的优越性。基于双IRS辅助的上行链路多用户通 信方案可以广泛应用于各种需要高效、可靠通信的 场景,如大型企业办公楼、会议中心、机场、体育场 馆等。在这些场景中,存在大量用户同时进行上行 通信的需求,而传统系统常常面临容量限制和干扰 问题。通过引入双IRS辅助,我们可以充分利用波 束成形和信号反射的优势,提高系统的传输效率和 抗干扰能力,从而满足多用户通信的需求。因此, 该研究对无线通信技术的发展具有重要意义,为多 用户通信系统的性能提升和优化提供了新的途径, 有助于推动无线通信技术在各种实际应用场景中 的应用和发展。

参考文献

- BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access, 2019, 7: 116753-116773.
- [2] WU Qingqing, ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106-112.
- [3] 马好好, 解培中, 李汀. IRS 辅助的安全通信系统波束 成形嵌套优化算法[J]. 信号处理, 2022, 38(8): 1728-1736.

MA Haohao, XIE Peizhong, LI Ting. Beamforming nested optimization algorithm for IRS-assisted secure communication systems[J]. Journal of Signal Processing, 2022, 38(8): 1728-1736. (in Chinese)

- [4] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313-3351.
- [5] GUO Huayan, LIANG Yingchang, CHEN Jie, et al. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks [J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3064-3076.
- [6] WU Qingqing, ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming [J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394-5409.

- ZHENG Beixiong, ZHANG Rui. IRS meets relaying: Joint resource allocation and passive beamforming optimization [J]. IEEE Wireless Communications Letters, 2021, 10(9): 2080-2084.
- [8] HUANG Kewen, WANG Huiming. Passive beamforming for IRS aided wireless networks [J]. IEEE Wireless Communications Letters, 2020, 9(12): 2035-2039.
- [9] 张雷,王玉,田建杰,等.基于IRS辅助的MIMO车联网系统联合波束成形设计[J].通信学报,2023,44
 (2):59-69.
 ZHANG Lei, WANG Yu, TIAN Jianjie, et al. Joint beam forming design for IRS-aided MIMO Internet of vehicles system[J]. Journal on Communications, 2023, 44(2): 59-69. (in Chinese)
- [10] 李中捷, 熊吉源, 高伟, 等. 分布式 IRS 辅助毫米波 MU-MISO 系统联合波束成形设计[J]. 通信学报, 2022, 43(4): 216-226.

LI Zhongjie, XIONG Jiyuan, GAO Wei, et al. Joint beamforming design for distributed IRS assisted millimeter wave MU-MISO system [J]. Journal on Communications, 2022, 43(4): 216-226. (in Chinese)

 [11] 徐顺清,石晶林,周一青,等.基于波束训练的大规模 MIMO多用户度调度算法[J].高技术通讯,2022,32
 (3):248-260.

XU Shunqing, SHI Jinglin, ZHOU Yiqing, et al. Largescale MIMO multi-user scheduling algorithm based on beam training [J]. Chinese High Technology Letters, 2022, 32(3): 248-260. (in Chinese)

- [12] 任静.基于毫米波大规模 MIMO的用户调度问题[J].空 军工程大学学报(自然科学版), 2020, 21(6): 60-65.
 REN Jing. Research on user scheduling problems based on millimeter wave massive MIMO[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(6): 60-65. (in Chinese)
- [13]何世文,袁军,安振宇,等.基于图神经网络的联合用 户调度与波束成形优化算法[J].通信学报,2022,43 (7):73-84.

HE Shiwen, YUAN Jun, AN Zhenyu, et al. GNN-based optimization algorithm for joint user scheduling and beam-forming [J]. Journal on Communications, 2022, 43(7):

73-84. (in Chinese)

- [14] ZHENG Beixiong, YOU Changsheng, ZHANG Rui. Efficient channel estimation for double-IRS aided multiuser MIMO system [J]. IEEE Transactions on Communications, 2021, 69(6): 3818-3832.
- [15] ZHENG Beixiong, YOU Changsheng, ZHANG Rui. Double-IRS assisted multi-user MIMO: Cooperative passive beamforming design[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4513-4526.
- [16] TSE D, VISWANATH P. Fundamentals of Wireless Communication [M]. Cambridge: Cambridge University Press, 2005.
- [17] WU Qingqing, ZHANG Rui. Intelligent reflecting surface enhanced wireless network: joint active and passive beamforming design[C]//2018 IEEE Global Communications Conference (GLOBECOM). Abu Dhabi, United Arab Emirates. IEEE, 2019: 1-6.
- [18] 晏蕾芩. 毫米波大规模 MIMO 系统中预编码及用户调 度技术的研究[D]. 北京: 北京邮电大学, 2019.
 YAN Leiqin. Research on precoding and user scheduling in millimeter-wave massive MIMO system [D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)

作者简介

柳 翠 女,2001年生,安徽芜湖人。 苏州大学电子信息学院硕士研究生,主要 研究方向为智能反射面、协作通信、物理 层安全技术等。

E-mail: 20214228041@stu. suda. edu. cn

芮贤义 男,1981年生,江苏南京人。 毕业于上海交通大学电子系并获得博士 学位,苏州大学电子信息学院信息工程系 副教授,主要研究方向为智能反射面、协 作通信、物理层安全技术等。 E-mail: xyrui@suda. edu. cn

(责任编辑:边熙淳)