实时自适应的立体匹配网络算法

曾军英, 冯武林, 甘俊英, 翟懿奎, 秦传波, 王璠, 朱伯远

曾军英, 冯武林, 甘俊英, 翟懿奎, 秦传波, 王璠, 朱伯远. 实时自适应的立体匹配网络算法[J]. 信号处理, 2019, 35(5): 843-849. DOI: 10.16798/j.issn.1003-0530.2019.05.016
引用本文: 曾军英, 冯武林, 甘俊英, 翟懿奎, 秦传波, 王璠, 朱伯远. 实时自适应的立体匹配网络算法[J]. 信号处理, 2019, 35(5): 843-849. DOI: 10.16798/j.issn.1003-0530.2019.05.016
Zeng Junying, Feng Wulin, Qin Chuanbo, Gan Junying, Zhai Yikui, Wang Fan, Zhu Boyuan. Real-time Adaptation for Stereo Matching[J]. JOURNAL OF SIGNAL PROCESSING, 2019, 35(5): 843-849. DOI: 10.16798/j.issn.1003-0530.2019.05.016
Citation: Zeng Junying, Feng Wulin, Qin Chuanbo, Gan Junying, Zhai Yikui, Wang Fan, Zhu Boyuan. Real-time Adaptation for Stereo Matching[J]. JOURNAL OF SIGNAL PROCESSING, 2019, 35(5): 843-849. DOI: 10.16798/j.issn.1003-0530.2019.05.016

实时自适应的立体匹配网络算法

基金项目: 国家自然科学基金(61771347);广东省特色创新类项目(2017KTSCX181);广东省青年创新人才类项目(2017KQNCX206);江门市科技计划项目(江科[2017]268号);五邑大学青年基金(2015zk11)
详细信息
    通讯作者:

    秦传波   E-mail: tenround@163.com

  • 中图分类号: TP391

Real-time Adaptation for Stereo Matching

More Information
    Corresponding author:

    Zhai Yikui   E-mail: tenround@163.com

  • 摘要: 立体匹配是一个经典的计算机视觉问题。采用传统方法或卷积神经网络(CNN)方法的立体匹配,其精确度和实时性不能满足实际的在线应用。针对该问题,本文提出一种实时自适应的立体匹配网络算法,通过引入一种新的轻量级的、有效的结构模块自适应立体匹配网络(Modularly Adaptive Stereo Network,MASNet),在网络中嵌入无监督损失模块和残差细分模块,使立体匹配的准确性和实时性得到提高。实验结果表明,本文方法相比具有相似复杂度的模型,精确度更高,并且能以平均约25帧每秒的处理速度达到在线使用的要求。
    Abstract: Stereo matching is a classical computer vision problem. The accuracy and real-time performance of the traditional method or convolutional neural network (CNN) method for stereo matching cannot meet the requirements of online application. Therefore, a real-time adaptive stereo matching network algorithm was proposed in this paper. The accuracy and real-time performance was improved by introducing a new lightweight and effective architecture Modularly Adaptive Stereo Network (MASNet), embedded an unsupervised loss function and residual refinement module. The experimental results show that the proposed method is more accurate than the model with similar complexity, and the processing speed of about 25 frames per second on average meets the requirements of online usage.
  • [1] Zhang K, Fang Y, Min D, et al. Cross-scale cost aggregation for stereo matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1590-1597.
    [2] Hosni A, Rhemann C, Bleyer M, et al. Fast cost-volume filtering for visual correspondence and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 504-511.
    [3] Liu C, Yuen J, Torralba A. Sift flow: Dense correspondence across scenes and its applications[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(5): 978-994.
    [4] Zbontar J, LeCun Y. Stereo matching by training a convolutional neural network to compare image patches[J]. Journal of Machine Learning Research, 2016, 17(1-32): 2.
    [5] Shaked A, Wolf L. Improved stereo matching with constant highway networks and reflective confidence learning[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4641-4650.
    [6] Guney F, Geiger A. Displets: Resolving stereo ambiguities using object knowledge[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 4165-4175.
    [7] Luo W, Schwing A G, Urtasun R. Efficient deep learning for stereo matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 5695-5703.
    [8] Mayer N, Ilg E, Hausser P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4040-4048.
    [9] Jie Z, Wang P, Ling Y, et al. Left-Right Comparative Recurrent Model for Stereo Matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3838-3846.
    [10] Chang J R, Chen Y S. Pyramid Stereo Matching Network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5410-5418.
    [11] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]//Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012: 3354-3361.
    [12] Menze M, Geiger A. Object scene flow for autonomous vehicles[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3061-3070.
    [13] Kendall A, Martirosyan H, Dasgupta S, et al. End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 66-75 .
    [14] Khamis S, Fanello S, Rhemann C, et al. Stereonet: Guided hierarchical refinement for real-time edge-aware depth prediction[C]//Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 8-14.
  • 期刊类型引用(5)

    1. 张泽琳,曹星,王蕾,夏绪辉. 基于改进SGM的废旧机械零件彩色三维重建方法. 激光与光电子学进展. 2024(12): 114-124 . 百度学术
    2. 杨翼. 数字孪生模型在微波设备中的实时自适应算法应用研究. 无线互联科技. 2024(15): 1-4 . 百度学术
    3. 齐欣宇,方志军,杨淑群. 融合空洞卷积网络的无监督单目深度恢复. 小型微型计算机系统. 2023(10): 2262-2268 . 百度学术
    4. 黄怡洁,朱江平,杨善敏. 基于注意力机制的立体匹配算法. 计算机应用与软件. 2022(07): 235-240+309 . 百度学术
    5. 尹萍,徐爱俊,尹建新. 基于改进SGM的立木视差图生成方法. 激光与光电子学进展. 2022(18): 372-381 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  164
  • HTML全文浏览量:  4
  • PDF下载量:  478
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-01-10
  • 修回日期:  2019-03-24
  • 发布日期:  2019-05-24

目录

    /

    返回文章
    返回