对比度融合的视觉显著性检测算法

Visual Saliency Detection via Contrast Combinations

  • 摘要: 显著性检测是计算机视觉和图像处理领域的研究热点问题。根据人类心理学原理,在自底向上的方法中对视觉显著性影响最大的就是基于对比度度量的定义以及计算。本文根据人眼视觉注意系统的特性,提出一种基于对比度融合的视觉显著性检测框架,旨在融合当前广泛使用的对比度计算方法。具体而言,这些显著性算法包括中心-四周对比度、对角-四周对比度以及全局对比度。该融合框架能够继承不同对比度度量的优点,因此可以产生更加准确和鲁棒的显著性图。实验结果验证了本文方法的有效性,并证明了使用对比度融合的方法能够取得比单一对比度度量更好的视觉显著性检测效果。

     

    Abstract: Saliency detection is an important task in computer vision and image processing. The most influential factor in bottom-up visual saliency is contrast operation. In this paper, we propose a unified model to combine widely used contrast measurements, namely, center-surround, corner-surround and global contrast to detect visual saliency. The proposed model benefits from the advantages of each individual contrast operation, and thus produces more robust and accurate saliency maps. Extensive experimental results on natural images show the effectiveness of the proposed model for visual saliency detection task, and demonstrate the combination is superior to individual subcomponent.

     

/

返回文章
返回