矩阵填充及其在信号处理中的应用

Matrix Completion and Its Application in Signal Processing

  • 摘要: 本文首先阐述了矩阵填充的应用背景,给出了矩阵填充的数学模型,详细分析了矩阵填充中的低秩特性和非相干特性,重点介绍了矩阵填充三种典型的重构算法:SVT(Singular Value Thresholding)算法、ADMiRA(Atomic Decomposition for Minimum Rank Approximation)算法和SVP(Singular Value Projection)算法,文中的仿真实验对这三种算法的重构性能进行了比较;文章随后分析了矩阵填充和压缩感知的联系;最后介绍了矩阵填充在协同过滤、系统识别、传感器网络、图像处理、稀疏信道估计、频谱感知以及多媒体编码和通信等方面的的应用。

     

    Abstract: This paper describes the background of matrix completion firstly, points out the mathematics model of matrix completion, analyzes the low rank property and the incoherence property in matrix completion. Mainly introduces three reconstruction algorithm commonly used in matrix completion: SVT(Singular Value Thresholding)、ADMiRA(Atomic Decomposition for Minimum Rank Approximation)and SVP(Singular Value Projection), compares their reconstruction performance in this paper. Secondly, we analyze the connection between matrix completion and compressed sensing. Finally we introduce the application of matrix completion in collaborative filtering, system identification, sensor network, image processing, sparse channel estimation, spectrum sensing and multimedia coding and communication.

     

/

返回文章
返回