基于局部行为搜索策略的半监督学习算法及其应用研究

Semi-Supervised Learning Algorithm and Application Based on Local Behavioral Searching Strategy

  • 摘要: 近年来,半监督学习在模式识别和机器学习领域引起了广泛关注。在这些方法中,半监督支持向量机是非常主流的一类方法。然而,学习过程中热核函数的参数选择问题一直困扰着研究人员,若选取不当,学习性能会显著下降。为了解决该问题,本文提出一种新颖的基于局部行为搜索策略的半监督学习算法。新算法基于人类行为搜索策略,传统的支持向量机被正则化为拉普拉斯图。在搜索到特征空间的局部分布后,行为因子能够映射到样本邻域的潜在概率分布。为验证新算法有效性,本文分别进行了UCI数据集和实际通信辐射源特征数据集实验。实验结果显示与传统方法相比,新算法的分类结果能够更加有效和稳定。

     

    Abstract: Semi-supervised learning has attracted significant attention in pattern recognition and machine learning. Among these methods, a very popular type is semi-supervised support vector machines. However, parameter selection in heat kernel function during the learning process is troublesome and harms the performance improvement of the hypothesis. To solve this problem, a novel local behavioral searching strategy is proposed for semi-supervised learning in this paper. In detail, based on human behavioral learning theory, the support vector machine is regularized with the un-normalized graph Laplacian. After building local distribution of feature space, local behavioral paradigm considers the form of the underlying probability distribution in the neighborhood of a point. Validation of the proposed method is performed with toy and real-life data sets. Results demonstrate that compared with traditional method, our method can more effectively and stably enhance the learning performance.

     

/

返回文章
返回