交通场景中有监督序学习拥挤度排序算法

Supervised Learning Rank Algorithm of Congestion Degree in Traffic Scenes

  • 摘要: 为自动分析交通场景的拥挤度与速度属性,提出基于有监督序学习的交通场景拥挤度排序计算模型,利用监督学习思路分别学习交通拥挤度和平均速度两个属性的排序函数。在交通拥挤度排序模型中,首先提取每帧训练图像的Gist特征,而对于平均速度的排序模型,首先提取视频运动信息,然后再分别提取Gist特征,最后引入改进的Ranking SVM投影模型,学习得到拥挤度和速度的排序模型。在三组交通视频数据集的实验结果表明提出的排序模型准确度、稳定性更高。

     

    Abstract: For automatic ananlysis of traffic scene attributes (‘congestion’,’ average speed’), traffic scene congestion degree rank calculation model is proposed based on supervised learning. Using supervised learning ideas,we learn a ranking function per attribute (‘congestion’,’average speed’). For traffic congestion degree rank model, we extract Gist feature of each frame training images, however, for average speed degree rank model, firstly, we extract video motion information and then extract Gist feature, finally, we introduce modified Ranking SVM projection model to get rank model of traffic congestion degree and speed degree. Experimental results on three types of databases show that the proposed rank model has more accuracy and stability.

     

/

返回文章
返回