面向指背关节纹识别的图像集与凸壳优化算法

Finger-knuckle-print Recognition Based on Image Sets and Convex Optimization

  • 摘要: 本文将指背关节纹作为生物特征识别对象,提出了基于图像集与凸壳优化模型的指背关节识别算法。所提算法以指背关节纹图像集作为输入,并将局部相位特征方法用于指背关节纹特征提取,进而寻求适用于指背关节纹识别的凸壳优化模型,研究凸壳模型的构建方法并对其进行优化,从而完成指背关节纹的识别。仿真实验表明,所提算法在公开的指背关节纹中,均取得了不错的识别结果。

     

    Abstract: In this paper, A finger-knuckle-print (FKP) recognition algorithm based on image set and convex hull optimization model is presented. The proposed method start from the viewpoint of inputting biometric image sets, and seeking for the suitable convex hull optimization model. Local phase quantization is utilized for feature extraction, and the extracted feature is adopted for the convex hull model construction and optimization, in order to finish finger-knuckle-print recognition. Simulation experiments show that, the proposed algorithm can achieve good performance on the public FKP database.

     

/

返回文章
返回