分辨性分解结合块稀疏表示的遮挡人脸识别算法

Combine Discriminative Decomposition with Structured Sparse Representation for Face Recognition with Occlusion

  • 摘要: 针对遮挡人脸检测问题,将分辨性分解模型与块稀疏表示结合起来提出基于分辨性分解块稀疏表示的遮挡人脸识别算法。首先,利用该图像分解算法将训练图像集分解成共同部分、低秩条件部分和稀疏误差部分;其次,分别在共同部分和低秩条件部分上利用PCA构造投影矩阵,联合两个投影矩阵构造最终的投影矩阵,并对原训练集及测试样本进行投影;最后,在投影空间中利用块稀疏表示对测试样本进行分类识别。在AR数据库上的遮挡仿真实验证明,与SRC、NS、BS算法相比,该方法可以在低维特征空间上获得较高的识别率且具有更强的鲁棒性。

     

    Abstract: To solve the image recognition problem with occlusion, we combined Discriminative Decomposition (DD) model with structured sparse representation. First, images are decomposed to three parts, common component,low-rank condition component and sparse error component; secondly, compute projection matrix on common component and low-rank component respectively and construct the final projection matrix by unite the two matrixes; Finally, the recognition was processed on the projection subspace using structured sparse representation. For our knowledge, it’s the first time to combine this composition method with structured sparse representation in PCA projection subspace. Experiment results on AR dataset verify our method can get higher recognition rate than BS (Block Sparse Representation),NS (Nearest Subspace) and SRC in low-dimension.

     

/

返回文章
返回