对角型广义RBF神经网络与非线性时间序列预测

Diagonal Generalized RBF Neural Network and Nonlinear Time Series Prediction

  • 摘要: 径向基函数(RBF)神经网络在非线性时间序列预测方面发挥着重要作用。本文提出了对角型广义RBF神经网络模型,并利用贝叶斯阴阳(BYY)谐和学习算法进行隐层单元个数的选择和参数初始值的设置,且建立了同步LMS算法进行参数学习。进一步,将对角型广义RBF神经网络应用于非线性时间序列预测,得到了预测准确率高和速度快的效果。

     

    Abstract: Radial Basis Function (RBF) neural network plays an important role in nonlinear time series prediction. In this paper, we propose a diagonal generalized RBF neural network model, utilize the Bayesian Ying-Yang (BYY) harmony learning algorithm for the selection of number of hidden units and the setting of initial parameters, and construct a synchronous LMS learning algorithm for parameter learning. Moreover, the diagonal generalized RBF neural network is applied to nonlinear time series prediction, with the advantages of high prediction accuracy and fast speed.

     

/

返回文章
返回