一种适于在线学习的增量支持向量数据描述方法

An Incremental Support Vector Data Description Method for Online Learning

  • 摘要: 本文针对支持向量数据描述(Support Vector Data Description, SVDD)中的在线学习问题,提出了一种增量支持向量数据描述方法(Incremental Support Vector Data Description, ISVDD)。该增量方法对增量样本的训练是一个迭代过程,每次迭代包括两个步骤:(1)对于获取的增量样本,ISVDD方法利用先验训练模型信息,将新增样本与已有样本集划分为三种集合,计算全部样本的属性值;(2)在六种条件下实现样本属性之间的迁移,获得各个样本的系数变化量。与标准SVDD相比,它减少了在线增量样本的训练时间,缓解了数据优化中对内存量的巨大需求,而且能够获得和标准SVDD一样的分类性能,实验结果验证了本文方法的有效性和正确性。

     

    Abstract: An incremental support vector data description (ISVDD) method is proposed for online learning on SVDD. It is a iterative process for training the incremental sample where each iteration composes of two steps: (1) ISVDD can fully use prior training model information to divide the existent samples and incremental sample to three sets, and compute the property value for each sample. (2) Under six conditions, the migrating of sample can be achieved, which brings in the coefficient change values for samples. Compared with standard SVDD, the proposed method reduces training time for online incremental samples,releases large memory burthen and can reach the classification accuracy as same as that of SVDD. The experimental results prove the efficiency and validity of the proposed method.

     

/

返回文章
返回