基于DS理论的混合式时空域信息融合模型

Research on Temporal-Spatial Information Fusion Model Based on DS Theory

  • 摘要: 利用信息融合技术进行目标识别,已经成为模式识别领域的重要研究方向。而利用DS理论进行时空域信息融合是信息融合领域的一个研究热点。信息融合技术既包括了在空间域上对多个证据的融合,也包括了在时间域上对不同时刻的同一证据源提供的证据的融合。本文首先介绍递归集中式,递归分布无反馈式和递归分布有反馈式三种典型时空信息融合模型,通过对各模型进行的理论分析和算例仿真,得出一个与前人不同的观点;然后以空间目标融合识别为背景,提出一种有效的混合式时空信息融合模型。在保证识别率的前提下,该模型能节约系统资源,降低运算量。仿真实验验证了该模型的有效性。

     

    Abstract: Target recognition using information fusion techniques becomes an important research direction in the domain of pattern recognition. Temporal spatial information fusion using the DS theory is a research focus in the domain of information fusion. Information fusion techniques include integration of several evidences in the spatial domain and integration of evidences in different moments from the same evidence source in the time domain. This paper introduces three classical temporal spatial information fusion models, namely recursive centralized, recursive distributed without feedback and recursive distributed with feedback firstly. By theoretical analysis and example simulation, this paper presents a new conclusion which is different from the others. Then an effective hybrid model of temporal-spatial information fusion is proposed according to the background of space target Fusion Recognition, which can save system resources and reduce the computational complexity on the condition of ensuring recognition efficiency. Simulation result shows the efficiency of the new model.

     

/

返回文章
返回