一种基于遗传算法的SVM决策树多分类方法

A GA-based SVM Decision-tree Multi-Classification method

  • 摘要: 在当前的机器学习领域,如何利用支持向量机(SVM)对多类目标进行分类,同时提高分类器的分类效率已经成为研究的热点之一,有效地解决此问题对于提高目标的识别概率具有较大意义。本文针对SVM多分类问题提出了一种基于遗传算法的SVM最优决策树生成算法。算法以随机生成的决策树构建的SVM分类器对同一测试样本的分类正确率作为遗传算法的适应度函数,通过遗传算法寻找到最优决策树,再以最优决策树构建SVM分类器,最终实现SVM的多分类。将该算法应用于低空飞行声目标识别问题,实验结果表明,新方法比传统的1-a-1、1-a-r、SVM-DL和GADT-SVM方法有更高的分类精度和更短的分类时间。

     

    Abstract: Recently, in the fields of machine learning, how to use support vector machine for multi-class objects classification while improving the classification efficiency of the classifier has become one of the main study points, effective solutions to this problem have great significance for improving the probability of target recognition. In this paper we present a GA-based SVM decision tree algorithm. In our algorithm, we randomly generate a decision tree to build the SVM classifier on the same test samples of the classification accuracy rate as the genetic algorithm fitness function, then with the help of genetic algorithm,we can find the optimal decision tree, and then construct an optimal decision tree SVM classifier as the optimal SVM classifier. We use this algorithm to deal with the low altitude flying passive acoustic target identify problem. Experiment results show that the proposed method is more precise and less testing time cost than the traditional 1-a-1,1-a-r,SVM-DL,GADTSVM methods.

     

/

返回文章
返回