一种扩展H粒子滤波方法

A Extended H Particle Filter Algorithm

  • 摘要: 重要性函数的选择是粒子滤波算法的核心, 本文提出一种基于扩展H滤波(EHF) 产生重要性函数的扩展H 粒子滤波(EHPF) 算法, 由于EHF 滤波算法鲁棒性强、滤波精度高, 且该滤波算法考虑了最新的观测数据, 因此由其产生的重要性函数更接近于系统状态的真实后验概率分布。理论分析和仿真结果表明扩展H 粒子滤波算法的滤波性能明显优于标准粒子滤波算法, 扩展卡尔曼滤波算法和扩展卡尔曼粒子滤波算法, 与不敏粒子滤波算法滤波精度相当, 但计算复杂度要低于不敏粒子滤波算法, 是一种有效的粒子滤波算法。

     

    Abstract: The choose of important function is a critical issue in particle filter algorithm,in the paper we propose a extended Hparticle filter (EHPF) algorithm with a important function generated by the extended H filter(EHF) . Because the extended Hfilter al-gorithm has very high accuracy and strong robustness, and the filter algorithm integrates the new observations, then the important function which it generates can approximate the real posterior probability distribution of the system state reasonable well. The theoretical analysis and experimental results show that the extended  H particle filter algorithm is superior to the standard particle filter algorithm and others  filters algorithm such as the extended kalman filter algorithm and extended kalman particle filter algorithm, provides performance compara-ble to that of the unscented kalman particle filter algorithm but with lower computational cost, so it's a effective particle filter algorithm.

     

/

返回文章
返回