基于稀疏表示结合流形距离的超球覆盖可拒绝模式识别算法研究

Pattern Recognition with Reject Option Based on Sparse Representation  Combined with Manifold Distance Hyperspherical Covering Model

  • 摘要: 本文构造了一种基于稀疏表示结合流形距离超球覆盖的可拒绝模式识别模型。由于同类样本可以认为分布在同一个非线性流形上,所以在训练学习过程中首先对各类样本空间构建局部线性流形子空间超球覆盖模型,并选择训练样本。这样对于输入的测试模式,即可根据各类的子空间包含边界做出拒识或者接受处理的判决。然后,针对接受的模式,再利用稀疏表示分类器在训练样本空间范围内进行分类判决。在UCI数据库、MNIST手写体数据库、MIT-CBCL人脸识别数据库和CMU AMP人脸表情数据库上的实验结果表明本文的思路合理可行,在实际应用领域具有一定应用价值。

     

    Abstract: A pattern recognition model with reject option, which is based on sparse representation combined with manifold distance hyperspherical covering model, is constructed in this paper. The samples in each class set can be supposed to distribute on a nonlinear manifold, so the local linear manifold subspace hyperspherical covering model for each class is obtained as the first step. And the input test pattern could be rejected or accepted by all the subspace boundaries associated with each class. Then, if a pattern is accepted by the above step, the sparse representation classifier (SRC) is used for classification in the training sample set. Experiments on the UCI database, the MNIST database of handwritten digitals, the MITCBCL face recognition database, and the CMU AMP face expression database show that this method is valid and efficient.

     

/

返回文章
返回