面向自然场景分类的贝叶斯网络局部语义建模方法

Bayesian Network Based Local Semantic Modeling for  Categorization of Natural Scenes

  • 摘要: 本文提出了一种基于贝叶斯网络的局部语义建模方法。网络结构涵盖了区域邻域的方向特性和区域语义之间的邻接关系。基于这种局部语义模型,建立了场景图像的语义表述,实现自然场景分类。通过对已标注集的图像样本集的学习训练,获得贝叶斯网络的参数。对于待分类的图像,利用该模型融合区域的特征及其邻接区域的信息,推理得到区域的语义概率;并通过网络迭代收敛得到整幅图像的区域语义标记和语义概率;最后在此基础上形成图像的全局描述,实现场景分类。该方法利用了场景内部对象之间的上下文关系,弥补了仅利用底层特征进行局部语义建模的不足。通过在六类自然场景图像数据集上的实验表明,本文所提的局部语义建模和图像描述方法是有效的。

     

    Abstract: A novel approach using bayesian network is proposed for local semantic modeling of natural scenes. Directions of region’s neighborhood and adjacent region’s semantics are involved in the structure of the bayesian network. Image representation is formed by the local sematic descriptors for categorization of scenes. Parameters of the bayesian network are learned using the training set with manual annotation. For test images, the probability of the regions’ semantic is infered by the bayesian network based on the lowlevel features as well as the semantics of adjacent regions. The final annotation result of whole image regions is approached by iterations through th network. Images are represented through the frequency of occurrence of the local semantic objects. Experiment conducted on natural scenes’ dataset demonstrate the effectiveness and effciency of the proposed approach for local semantic modeling and categorization of natural scenes.

     

/

返回文章
返回