BICM-OFDM系统中基于ML算法的迭代频偏估计

Iterative Frequency Offset Estimation Based on ML  Algorithm for BICM-OFDM

  • 摘要: 正交频分复用(OFDM)联合比特交织编码调制(BICM),是一种能够有效地抗频率选择性衰落的技术。由于载波频偏的存在会引起载波间干扰,导致系统性能的严重下降。针对BICM-OFDM系统提出了一种基于最大似然(ML)估计的迭代频偏估计算法。该算法充分利用了译码信息,分两步进行。首先,利用最大似然估计进行初始频偏估计,然后再利用BICM译码的硬判决反馈信息进行残留频偏估计。通过BICM迭代译码,更新译码反馈信息,提高频偏估计精度。在短波宽带信道下的仿真结果表明,在频偏为0~02的范围内,提出的算法经过3次迭代可有效地进行频偏估计。与传统最大似然估计算法相比,本文提出的算法提高了低信噪比下的频偏估计精度,并且提高了频偏估计范围。

     

    Abstract: The combination of orthogonal frequency division multiplexing (OFDM) and bit-interleaved coded modulation (BICM) is known as an efficient technique to combat frequency selective fading. Significant performance degradation can result from carrier frequency offset ,which caused Inter Carrier Interference(ICI). Based on Maximum Likelihood(ML)algorithm , an itertive frequency offset estimation algorithm for BICM-OFDM system is proposed. This algorithm makes full use of the information provided by decoder,and has two steps. Firstly, the initial estimation employs the conventional ML algorithm,then, the rudimental frequency offset can be obtained by hard-decision information provided by BICM decoder. The precision could be improve by the feedback information that provided by iterative decoder of BICM. Through the wideband HF channel,the simulation results show that, in the range between 0 and 0.2,the proposed algorithm efficiently estimates frequency offset after three iterations. The proposed algorithm improves the accuracy of frequency offset estimation with low SNR and improves the range of frequency offset estimation compared with the conventional ML algorithm.

     

/

返回文章
返回