基于观测迭代的插值粒子滤波算法

Improved Divided Difference Particle Filter Based on Observation Interation

  • 摘要: 基于序贯重要性抽样(SIS)及贝叶斯理论的粒子滤波能够很好地处理非线性及非高斯问题。如何选取重要密度函数以减小粒子退化影响提高粒子滤波精度是粒子滤波的主要问题之一。传统粒子滤波器以高斯分布作为参考分布。由于没有利用新的观测,通常需要大量的粒子才能准确表达状态后验分布。本文采用基于观测迭代的插值参考分布提高重要密度函数估计精度,减少了后验概率密度估计误差,同时结合观测系统的最近一次的量测,更好的匹配后验概率密度。 仿真结果显示该滤波器要优于其他粒子滤波器。

     

    Abstract: Based on the concept of sequential importance sampling (SIS) and the use of Bayesian theory,particle filter is particularly useful in dealing with nonlinear and non-Gaussian problems.How to select an important density function to reduce the affection of the particle degeneration and improve the accuracy of the particle filter is one of the major problems.Taking guassian distribution as the proposal distribution,traditional particle filter do not integrate the latest meansurements,so it needs large quatity of particles to match the posterticle densty.In this paper,a new particle filter is proposed that uses a iterated divided difference filter to gengerate the importance proposal distribution is proposed to decrease the posterior probability distribution estimation error,ehhance tracking effect.The proposal distribution integrates the latest meansurements into system state transition density so it can match the posterior densty well.The simulation results show that the new particle filter performs superior to other particle filter.

     

/

返回文章
返回