基于鲁棒音阶特征和测度学习SVM的音乐和弦识别

Musical Chord Recognition based on Robust Pitch Class Profile and Metric Learning Support Vector Machine

  • 摘要: 和弦识别是音乐信息检索领域重要的研究内容之一,在信息处理、音乐结构分析以及推荐系统等方面具有重要的作用。为了降低人声对和弦进程的影响且恢复和弦所对应的谐波信息,文章分别对频谱中和弦所对应的谐波信息和人声信息进行建模,构建双目标优化问题,对和弦所对应的谐波信息进行有效重建,同时去除人声;其次,对谐波信息进行降维处理得到鲁棒性的音阶轮廓特征;最后为了提高支持向量机性能,文章采用测度学习的方法得到马氏距离,并使用马氏距离替换支持向量机的高斯核函数的欧氏距离,使得支持向量机的判别函数包含有数据的空间分布信息。最终实验结果表明,同基于现今流行的和弦识别算法相比,提出的和弦识别算法识别正确率率提高3.5%~12.2%。

     

    Abstract: Chord recognition is an important aspect of Music Information Retrieval, which plays an important role in information processing, musical structure analysis and recommender system. In order to reduce the influence of voice on chord progression and recovery harmonic information of chord, paper modeled harmonic and voice component and constructed a two-target optimal problem. Solving the optimal problem, paper reconstructed harmonic structure and removed sparse voice. Then, through performing a pitch mapping step, paper obtained robust pitch class profile. At last, obtaining a Mahalanobis matrix from feature space as metric matrix, paper replaced Euclidean Metric utilized in Radius Basis Function of SVM with Mahalanobis Metric. Mahalanobis Metric contain distribution information of specified real dataset, so the classification result is more robust. Compared with currently popular chord estimation algorithm, Results show proposed system improves the accuracy ratio of 3.5%~12.2% on chord recognition.

     

/

返回文章
返回