利用异质蜂窝网络大数据跨层优化无线资源

Leveraging Heterogeneous Wireless Big Data for Cross-layer  Resource Optimization in Cellular Networks

  • 摘要: 有效利用蜂窝网络中的不同类型、不同尺度的异质大数据可以在不同层面为移动通信系统优化提供新的自由度,有望大幅提升网络性能,已经引起了学术界、网络运营商和设备制造商的广泛关注。一种有效利用来自不同协议层无线大数据的方式是通过预测用户行为来提高网络的频谱和能量资源利用率。本文对该领域的研究进展进行概述,首先介绍主动/预测式缓存与传输资源管理所需要的群体和个体用户行为信息,然后介绍能够有效利用用户行为预测信息的两类代表性技术:主动边缘缓存和预测资源分配,最后总结未来的研究方向和开放性问题。

     

    Abstract: Harnessing different types of big data in different timescales from cellular networks to boost the performance of mobile networks remarkably is gaining wide attention from academia,mobile operators, and vendors, which is expected to provide new freedoms in system design from various aspects. One promising way to leverage the big data from different layers in wireless networks is to increase spectrum and energy resource utilization efficiency by predicting user behavior. This paper provides a survey of the research along this line. We first introduce the predictable information capturing collective and individual user behavior that are essential for managing caching and transmission resources in wireless edge. We then address two kinds of representative techniques using the predicted behavior information, namely proactive wireless edge-caching and predictive radio resource allocation. Finally, we identify open problems and future research topics.

     

/

返回文章
返回