Processing math: 100%

基于原型滤波器的OTFS通感一体信号技术

王杰, 熊志薇, 陈军, 梁兴东, 李焱磊, 陈龙永

王杰,熊志薇,陈军,等. 基于原型滤波器的OTFS通感一体信号技术[J]. 信号处理,2024,40(8): 1531-1543. DOI: 10.16798/j.issn.1003-0530.2024.08.014.
引用本文: 王杰,熊志薇,陈军,等. 基于原型滤波器的OTFS通感一体信号技术[J]. 信号处理,2024,40(8): 1531-1543. DOI: 10.16798/j.issn.1003-0530.2024.08.014.
‍WANG Jie,XIONG Zhiwei,CHEN Jun,et al. OTFS communication-sensing integrated signal technology based on a prototype filter[J]. Journal of Signal Processing, 2024, 40(8): 1531-1543. DOI: 10.16798/j.issn.1003-0530.2024.08.014
Citation: ‍WANG Jie,XIONG Zhiwei,CHEN Jun,et al. OTFS communication-sensing integrated signal technology based on a prototype filter[J]. Journal of Signal Processing, 2024, 40(8): 1531-1543. DOI: 10.16798/j.issn.1003-0530.2024.08.014

基于原型滤波器的OTFS通感一体信号技术

基金项目: 

国家自然科学基金 62171229

详细信息
    作者简介:

    王杰 男,1986年生,江苏兴化人。南京信息工程大学电子信息工程学院,硕士生导师,主要研究方向为MIMO雷达信号设计、合成孔径雷达处理、雷达通信一体化。E-mail:wangjie110@nuist.edu.cn

    熊志薇 女,1999年生,江西南昌人。南京信息工程大学电子信息工程学院,硕士研究生,主要研究方向为雷达通信一体化信号处理。E-mail:20211218042@nuist.edu.cn

    陈军 男,1988年生,安徽天长人。南京信息工程大学电子信息工程学院,硕士生导师,主要研究方向为雷达目标检测与跟踪、雷达波形设计、飞行器射频隐身技术。E-mail:junchen@nuist.edu.cn

    梁兴东 男,1973年生,吉林桦甸人。中国科学院空天信息创新研究院,微波成像技术国家级重点实验室副主任,研究员,博士生导师。主要研究方向为高分辨率合成孔径雷达系统、干涉合成孔径雷达系统、成像处理及应用、雷达通信一体化。E-mail:xdliang@mail.ie.ac.cn

    李焱磊 男,1983年生,河北定兴人。中国科学院空天信息创新研究院,微波成像技术国家级重点实验室,副研究员,硕士生导师。主要研究方向为新体制雷达信号处理、可重构异构处理架构、穿墙感知雷达技术研究。E-mail:lychen@mail.ie.ac.cn

    陈龙永 男,1979年生,安徽淮北人。博士,研究员,中国科学院空天信息创新研究院,微波成像技术国家级重点实验室副主任。研究方向为高分辨率合成孔径雷达系统、干涉合成孔径雷达系统、微波成像新概念、新体制和新技术雷达系统。E-mail:lychen@mail.ie.ac.cn

    通讯作者:

    王杰wangjie110@nuist.edu.cn

OTFS Communication-Sensing Integrated Signal Technology Based on a Prototype Filter

Funds: 

The National Natural Science Foundation of China 62171229

More Information
  • 摘要:

    随着无线技术的快速发展,无线设备呈现爆炸式增长趋势,导致频谱资源日益稀缺,雷达和通信频段不断重叠。为了避免无线通信和雷达感知之间的相互干扰,学术界广泛研究了通信感知一体化(Integrated Sensing and Communication,ISAC)技术,并且重点关注了正交时频空(Orthogonal Time Frequency Space, OTFS)信号。OTFS信号具备实现无线通信与雷达感知一体化的潜力。然而,分数多普勒会抬高OTFS多普勒旁瓣,引起多普勒弥散效应,不仅在通信数据与通信数据之间、通信数据与雷达数据之间产生严重干扰,还将导致微弱目标被强目标旁瓣淹没,进而影响雷达探测概率和通信信道估计精度,恶化整体性能。针对分数多普勒导致的OTFS性能下降问题,提出了基于原型滤波器的OTFS通感一体化信号设计方法。通过原型滤波器调理多普勒旁瓣,在不显著损失多普勒分辨率的同时,抑制多普勒弥散效应,提升检测概率,降低误码率。针对OTFS互相关匹配滤波信道估计算法计算复杂度高等问题,进一步提出了利用恒虚警率(Constant False Alarm Rate,CFAR)检测进行信道估计的思路,在降低计算复杂度的同时,稳健检测出了同一时延、不同多普勒的多个目标,保障了信道估计和目标检测性能。依据理论分析和仿真实验可知,本文可将分数多普勒条件下的通信误码率降低2个数量级。

    Abstract:

    ‍ ‍With the rapid development of wireless technology, wireless devices have shown an explosive growth trend, resulting in increasingly scarce spectrum resources and continuous overlap of radar and communication bands. To avoid the mutual interference between wireless communication and radar sensing, integrated sensing and communication technology has been widely studied in the academic community, and the orthogonal time frequency space (OTFS) signal has been a research hot spot. This signal has the potential to realize the integration of wireless communication and radar sensing; however, it is particularly sensitive to fractional Doppler. Nevertheless, fractional Doppler elevates the OTFS Doppler sidelobe and causes a Doppler dispersion effect, which not only generates major interference between communication data and radar data, but also leads to the flooding of weak targets by the strong target sidelobe. This then affects the radar probability of detection and the estimation accuracy of the communication channel, and deteriorates the overall performance. Aiming at solving the problem of OTFS performance degradation caused by fractional Doppler, a design method of OTFS integrated signal based on a prototype filter is proposed. The Doppler sidelobe is adjusted by the prototype filter, to suppress the Doppler dispersion effect and reduce the communication error rate without significant loss of Doppler resolution. Aiming at solving the problem of high computational complexity of the OTFS cross-correlation matched filter channel estimation algorithm, the idea of using constant false alarm rate (CFAR) detection for channel estimation is further proposed. While reducing the computational complexity, multiple targets with the same delay and different Doppler are robustly detected, which ensures the performance of channel estimation and target detection. According to theoretical analysis and simulation experiments, the technique presented in this paper can reduce the bit error rate of communication under fractional Doppler conditions by two orders of magnitude.

  • 图  1   K=4时,原型滤波器与矩形脉冲的频域响应

    Figure  1.   K=4,Frequency domain response of the prototype filter

    图  2   基于原型滤波器的OTFS的通感一体信号调制解调图

    Figure  2.   The modulation and demodulation diagram of communication sensing integrated signal of OTFS based on prototype filter

    图  3   调制原理框图

    Figure  3.   Block diagram of the modulation principle

    图  4   一体化信号模型

    Figure  4.   Integrated signal model

    图  5   CFAR检测流程图

    Figure  5.   CFAR detection flowchart

    图  6   仿真场景

    Figure  6.   Simulation scenario

    图  7   整体误码率随信噪比变化曲线

    Figure  7.   The curve of the overall bit error rate with signal-to-noise ratio

    图  8   不同部分通信误码率随信噪比变化曲线

    Figure  8.   The bit error rate of different parts of communication varies with signal-to-noise ratio

    图  9   一体化信号星座对比图

    Figure  9.   Integrated Signal Constellation Comparison Chart

    图  10   信号回波

    Figure  10.   Signal echo

    图  11   基于原型滤波器的OTFS雷达距离维切片

    Figure  11.   Range dimension slice of OTFS radar based on prototype filter

    图  12   在多普勒域的点扩展函数

    Figure  12.   Point spread function in Doppler domain

    图  13   在同一时延下多个目标的多普勒频移切片

    Figure  13.   Doppler shift slice of multiple targets at the same time delay

    图  14   不同调制阶数、不同增益差、不同信噪比等条件下的误码率变化曲线图

    Figure  14.   BER variation graphs under different modulation orders, different gain differences, different signal-to-noise ratios

    图  15   目标的增益差值参数估计准确度结果

    Figure  15.   Accuracy results of gain difference parameter estimation for the target

    表  1   原型滤波器频域参数

    Table  1   Frequency domain parameters of the prototype filter

    KH0H1H2H3
    212/2
    310.9114380.411438
    410.9719602/20.235147
    下载: 导出CSV

    表  2   目标参数

    Table  2   Objective parameters

    目标123456
    距离/m4.314.318.6212.9117.2421.55
    速度/(m/s)512525354560
    增益10.20.50.80.450.66
    下载: 导出CSV

    表  3   仿真参数

    Table  3   Simulation parameters

    参数参数值
    子载波间隔/kHz30
    单个符号时宽/μs33.33
    载波频率/GHz6
    子载波个数512
    本文方法符号数64
    OTFS符号数256
    总带宽/MHz30.72
    通信调制256-QAM
    信道模型EVA
    分数多普勒分辨率倒数10
    MRC检测最大迭代次数15
    下载: 导出CSV

    表  4   参数估计结果

    Table  4   Parameter estimation results

    目标123456
    估计距离/m4.314.318.6212.9117.2421.55
    估计速度/(m/s)4.6875124.853625.195335.156245.117259.7656
    下载: 导出CSV
  • [1] 梁兴东,李强,王杰,等. 雷达通信一体化技术研究综述[J]. 信号处理,2020,36(10):1615- 1627. doi:10.16798/j.issn.1003-0530.2020.10.001 doi: 10.16798/j.issn.1003-0530.2020.10.001

    LIANG Xingdong,LI Qiang,WANG Jie,et al. Joint wireless communication and radar sensing:Review and future prospects[J]. Journal of Signal Processing,2020,36(10):1615- 1627.(in Chinese). doi:10.16798/j.issn.1003-0530.2020.10.001 doi: 10.16798/j.issn.1003-0530.2020.10.001

    [2]

    HWANG T,YANG Chenyang,WU Gang,et al. OFDM and its wireless applications:A survey[J]. IEEE Transactions on Vehicular Technology,2009,58(4):1673- 1694. doi:10.1109/tvt.2008.2004555 doi: 10.1109/tvt.2008.2004555

    [3] 罗潇景. 基于滤波器组的多载波(FBMC)调制系统的研究及实现[D]. 成都:电子科技大学,2016.

    LUO Xiaojing. Research and implementation of optimization algorithm for modulation based on filter bank multi carrier(FBMC)[D]. Chengdu:University of Electronic Science and Technology of China,2016.(in Chinese)

    [4] 沈麟,颜彪,刘为波,等. FBMC-OQAM系统定时同步改进算法[J]. 电讯技术,2023,63(2):255- 259.

    SHEN Lin,YAN Biao,LIU Weibo,et al. An improved timing synchronization algorithm for FBMC-OQAM systems[J]. Telecommunication Engineering,2023,63(2):255- 259.(in Chinese)

    [5] 王逸鹏. 滤波器组多载波系统波形设计[D]. 杭州:浙江工商大学,2021.

    WANG Yipeng. Waveform design of filter bank multi-carrier system[D]. Hangzhou:Zhejiang Gongshang University,2021.(in Chinese)

    [6] 闻建刚,华惊宇,徐志江,等. FBMC系统中的SR-NYQ原型滤波器设计[J]. 中国科学:信息科学,2019,49(7):886- 899. doi:10.1360/n112018-00015 doi: 10.1360/n112018-00015

    WEN Jiangang,HUA Jingyu,XU Zhijiang,et al. Design of SR-NYQ prototype filter in an FBMC system[J]. Scientia Sinica(Informationis),2019,49(7):886- 899.(in Chinese). doi:10.1360/n112018-00015 doi: 10.1360/n112018-00015

    [7] 李飞. 无线通信系统新型多载波传输技术研究[D]. 北京:北京邮电大学,2019.

    LI Fei. Research on new multi-carrier transmission technology of wireless communication system[D]. Beijing:Beijing University of Posts and Telecommunications,2019.(in Chinese)

    [8]

    LI Fei,ZHENG Kan,ZHAO Hui,et al. QAM signal transmission based on matrix model in filter-bank multicarrier systems[J]. IEEE Access,2018,6:63987- 63998. doi:10.1109/access.2018.2877252 doi: 10.1109/access.2018.2877252

    [9]

    HADANI R,RAKIB S,TSATSANIS M,et al. Orthogonal time frequency space modulation[C]// 2017 IEEE Wireless Communications and Networking Conference(WCNC). San Francisco,CA,USA. IEEE,2017:1- 6. doi:10.1109/wcnc.2017.7925924 doi: 10.1109/wcnc.2017.7925924

    [10]

    HADANI R,RAKIB S S. OTFS method of data channel characterization and uses thereof:US10034184[P]. 2018-07-24. doi:10.1109/mwsym.2017.8058662 doi: 10.1109/mwsym.2017.8058662

    [11] 龙航,王森,徐林飞,等. OTFS技术研究现状与展望[J]. 电信科学,2021,37(9):57- 63. doi:10.11959/j.issn.1000-0801.2021221 doi: 10.11959/j.issn.1000-0801.2021221

    LONG Hang,WANG Sen,XU Linfei,et al. OTFS technology research and prospect[J]. Telecommunications Science,2021,37(9):57- 63.(in Chinese). doi:10.11959/j.issn.1000-0801.2021221 doi: 10.11959/j.issn.1000-0801.2021221

    [12]

    REZAZADEHREYHANI A,FARHANG A,JI Mingyue,et al. Analysis of discrete-time MIMO OFDM-based orthogonal time frequency space modulation[C]// 2018 IEEE International Conference on Communications(ICC). Kansas City,MO,USA. IEEE,2018:1- 6. doi:10.1109/icc.2018.8422467 doi: 10.1109/icc.2018.8422467

    [13]

    GAUDIO L,KOBAYASHI M,CAIRE G,et al. On the effectiveness of OTFS for joint radar parameter estimation and communication[J]. IEEE Transactions on Wireless Communications,2020,19(9):5951- 5965. doi:10.1109/twc.2020.2998583 doi: 10.1109/twc.2020.2998583

    [14]

    LI Shuangyang,YUAN Weijie,YUAN Jinhong,et al. On the potential of spatially-spread orthogonal time frequency space modulation for ISAC transmissions[C]// ICASSP 2022—2022 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP). Singapore,Singapore. IEEE,2022:8722- 8726. doi:10.1109/icassp43922.2022.9747626 doi: 10.1109/icassp43922.2022.9747626

    [15] 王杰,马海兰,梁兴东,等. 基于时延-多普勒联合调制的雷达通信一体化技术研究[J]. 信号处理,2023,39(6):1047- 1059.

    WANG Jie,MA Hailan,LIANG Xingdong,et al. Research on integrated radar communication technology based on delay-Doppler modulation[J]. Journal of Signal Processing,2023,39(6):1047- 1059.(in Chinese)

    [16]

    HASHIMOTO N,OSAWA N,YAMAZAKI K,et al. Channel estimation and equalization for CP-OFDM-based OTFS in fractional Doppler channels[C]// 2021 IEEE International Conference on Communications Workshops(ICC Workshops). Montreal,QC,Canada. IEEE,2021:1- 7. doi:10.1109/iccworkshops50388.2021.9473532 doi: 10.1109/iccworkshops50388.2021.9473532

    [17]

    TAN Yuanyuan,REN Pinyi,XU Dongyang. Doppler zero-insert extension for OTFS modulation with fractional Doppler[C]// 2022 8th International Conference on Big Data Computing and Communications(BigCom). Xiamen,China. IEEE,2022:422- 427. doi:10.1109/bigcom57025.2022.00059 doi: 10.1109/bigcom57025.2022.00059

    [18]

    RAVITEJA P,PHAN K T,HONG Yi,et al. Embedded delay-Doppler channel estimation for orthogonal time frequency space modulation[C]// 2018 IEEE 88th Vehicular Technology Conference(VTC-Fall). Chicago,IL,USA. IEEE,2018:1- 5. doi:10.1109/vtcfall.2018.8690836 doi: 10.1109/vtcfall.2018.8690836

    [19] 蒋占军,刘庆达,张鈜,等. 高速移动通信系统中OTFS分数多普勒信道估计加窗研究[J]. 电子与信息学报,2022,44(2):646- 653.

    JIANG Zhanjun,LIU Qingda,ZHANG Hong,et al. Study on OTFS fractional Doppler channel estimation and windowing in high-speed mobile communication systems[J]. Journal of Electronics& Information Technology,2022,44(2):646- 653.(in Chinese)

    [20]

    BELLANGER M. FS-FBMC:An alternative scheme for filter bank based multicarrier transmission[C]// 2012 5th International Symposium on Communications,Control and Signal Processing. Rome,Italy. IEEE,2012:1- 4. doi:10.1109/isccsp.2012.6217776 doi: 10.1109/isccsp.2012.6217776

    [21]

    AL-AMAIREH H,KOLLÁR Z. Optimization of hopping DFT for FS-FBMC receivers[J]. Signal Processing,2021,182:107983. doi:10.1016/j.sigpro.2021.107983 doi: 10.1016/j.sigpro.2021.107983

    [22]

    THAJ T,VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems[J]. IEEE Transactions on Vehicular Technology,2020,69(12):15606- 15622. doi:10.1109/tvt.2020.3044276 doi: 10.1109/tvt.2020.3044276

    [23]

    QIN Fei,LIU Yunlong,LIANG Xingdong. A novel GOSD-CFAR for millimeter wave radar detection[C]// IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa,HI,USA. IEEE,2020:1782- 1785. doi:10.1109/igarss39084.2020.9324693 doi: 10.1109/igarss39084.2020.9324693

  • 期刊类型引用(1)

    1. 吴华芹. 云计算海量光纤数据的差异化调度研究. 激光杂志. 2019(01): 155-158 . 百度学术

    其他类型引用(1)

图(15)  /  表(4)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  7
  • PDF下载量:  17
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-01-22
  • 刊出日期:  2024-08-19

目录

    /

    返回文章
    返回