非常规架设地网对DVOR系统空间辐射特性的影响

倪育德, 孟康, 刘瑞华

倪育德,孟康,刘瑞华.非常规架设地网对DVOR系统空间辐射特性的影响[J].信号处理,2023,39(12): 2225-2240. DOI: 10.16798/j.issn.1003-0530.2023.12.010.
引用本文: 倪育德,孟康,刘瑞华.非常规架设地网对DVOR系统空间辐射特性的影响[J].信号处理,2023,39(12): 2225-2240. DOI: 10.16798/j.issn.1003-0530.2023.12.010.
‍NI Yude,MENG Kang,LIU Ruihua.Influence of unconventional erect counterpoise on radiation performance of DVOR system[J].Journal of Signal Processing, 2023, 39(12): 2225-2240. DOI: 10.16798/j.issn.1003-0530.2023.12.010
Citation: ‍NI Yude,MENG Kang,LIU Ruihua.Influence of unconventional erect counterpoise on radiation performance of DVOR system[J].Journal of Signal Processing, 2023, 39(12): 2225-2240. DOI: 10.16798/j.issn.1003-0530.2023.12.010

非常规架设地网对DVOR系统空间辐射特性的影响

基金项目: 

国家自然科学基金 U2233215

详细信息
    作者简介:

    倪育德 男,1963年生,江西鹰潭人。中国民航大学教授,硕士。主要研究方向为陆基导航和全球导航卫星系统。E-mail:ydni@cauc.edu.cn

    孟 康 男,1998年生,山东聊城人。中国民航大学硕士研究生。主要研究方向为陆基导航多普勒甚高频全向信标。E-mail:943520681@qq.com

    刘瑞华(通讯作者) 男,1965年生,陕西蓝田人。中国民航大学教授,博士,主要研究方向为卫星导航和陆基导航系统。E-mail:rhliu_cauc@163.com

Influence of Unconventional Erect Counterpoise on Radiation Performance of DVOR System

  • 摘要: 地网是多普勒甚高频全向信标(Doppler very high frequency omni-directional range, DVOR)天线系统的重要组成部分,其常规架高及直径分别为5 m左右和30.5 m。随着城市化进程的持续推进,越来越多DVOR台站的环境正在急剧恶化,一些民航单位尝试将地网架高和地网直径同时增大,以减少周围建筑物对DVOR信标辐射性能的影响,但这些非常规架设地网对DVOR台辐射特性的影响缺乏理论分析,对这类地网的架设缺乏理论指导。结合DVOR系统的天线特征及馈电特点,基于物理光学法获得了包括直射场、地面反射场及地网散射场在内的DVOR辐射场,在此基础上,依据国际民航组织(International Civil Aviation Organization,ICAO)“附件10”的要求,给出了非常规架设地网时DVOR顶空盲区,以及不同飞行高度所对应的最远水平作用距离之内场强分布的求解方法,并进行了相应仿真实验。实验结果表明,若地网直径保持常规的30.5 m,对于非常规架高地网的DVOR信标,其垂直辐射特性不会出现多瓣现象,顶空盲区不会受到影响,在ICAO规定的不同飞行高度所对应最远水平作用距离之内的场强大小满足要求;但当地网架高增大到大于等于30 m时,即使将地网直径增大到50 m,也难以满足“附件10”规定的水平覆盖场强要求。研究成果可为非常规架设地网DVOR信标台的建设提供相应理论支持。
    Abstract: ‍ ‍The counterpoise is an important component of the Doppler very high frequency omnidirectional range (DVOR) antenna system, with a conventional height and diameter of approximately 5 m and 30.5 m respectively. With the continuous development of urbanization, the environment of DVOR beacons is rapidly deteriorating. Some civil aviation units are attempting to increase the height and diameter of the counterpoise simultaneously to reduce the impact of surrounding buildings on the radiation performance of DVOR beacons. However, there was a lack of theoretical analysis of the impact of these unconventional counterpoise on the radiation characteristics of DVOR beacons, and there was lack of theoretical guidance for the installation of such counterpoise. Based on the antenna characteristics and feeding characteristics of the DVOR system, the DVOR radiation electric field, including direct radiation electric field, ground reflection electric field, and counterpoise scattering electric field, was obtained using physical optics method. On this basis, according to the requirements of Annex 10 of the International Civil Aviation Organization (ICAO), the DVOR beacon upper space of silence during unconventional counterpoise installation was given, And the solution method for the electric field strength distribution within the farthest horizontal coverage distance corresponding to different flight altitudes, and corresponding simulation experiments were conducted. The experiment results showed that if the diameter of the counterpoise is maintained at a conventional 30.5 m, the vertical radiation characteristics of DVOR beacons with unconventional high counterpoise will not exhibit multi lobe phenomenon, and the upper space of silence will not be affected. The field strength within the farthest horizontal radiation distance corresponding to different flight heights specified by ICAO meets the requirements; But when the counterpoise height increases to 30 m or more, even if the diameter of the counterpoise is increased to 50 m, it is difficult to meet the horizontal coverage field strength requirements specified in Annex 10. The research results can provide corresponding theoretical support for the construction of unconventional counterpoise DVOR beacons.
  • 图  1   DVOR系统在空间产生的各部分辐射场示意图

    Figure  1.   The diagram of each part of the radiation field generated by the DVOR beacon in space

    图  2   判断β0~90°内某仰角上有无盲点的流程图

    Figure  2.   The flow chart of judging whether there is a silence point on an elevation angle within β0~90°

    图  3   地网架高h取不同值时DVOR信标垂直面归一化方向图(θ=90º)

    Figure  3.   When h takes different values, the vertical normalized pattern of the DVOR beacon(θ=90º)

    图  4   文献[17]利用BI-TOOLS软件仿真的DVOR天线系统垂直面方向图

    Figure  4.   Vertical pattern of DVOR antenna systems simulated by BI-TOOLS software in reference [17

    图  5   最远水平作用距离内场强覆盖仿真流程

    Figure  5.   Simulation process of field intensity coverage within the farthest horizontal radiation distance

    图  6   hM 为3000 m、4000 m对应覆盖范围的场强覆盖(h=10 m,2R=30.5 m)

    Figure  6.   The radiation field strength of DVOR beacon within coverage range corresponding to 3000 m and 4000 m (h=10 m,2R=30.5 m)

    图  7   hM 为5000 m、6000 m对应覆盖范围的场强覆盖(h=10 m,2R=30.5 m)

    Figure  7.   The radiation field strength of DVOR beacon within coverage range corresponding to 5000 m and 6000 m (h=10 m,2R=30.5 m)

    图  8   hM 为3000 m、4000 m对应覆盖范围的场强覆盖(h=20 m,2R=30.5 m)

    Figure  8.   The radiation field strength of DVOR beacon within coverage range corresponding to 3000 m and 4000 m (h=20 m,2R=30.5 m)

    图  9   hM 为5000 m、6000 m对应覆盖范围的场强覆盖(h=20 m,2R=30.5 m)

    Figure  9.   The radiation field strength of DVOR beacon within coverage range corresponding to 5000 m and 6000 m (h=20 m,2R=30.5 m)

    图  10   hM 为3000 m、4000 m对应覆盖范围的场强覆盖(h=20 m,2R=45 m)

    Figure  10.   The radiation field strength of DVOR beacon within coverage range corresponding to 3000 m and 4000 m (h=20 m,2R=45 m)

    图  11   hM 为5000 m、6000 m对应覆盖范围的场强覆盖(h=20 m,2R=45 m)

    Figure  11.   The radiation field strength of DVOR beacon within coverage range corresponding to 5000 m and 6000 m (h=20 m,2R=45 m)

    图  12   各个作用距离之内的场强覆盖(h=30 m,2R=45 m)

    Figure  12.   The radiation field strength of DVOR beacon within each radiation range (h=30 m,2R=45 m)

    图  13   各个作用距离之内的场强覆盖(h=30 m,2R=50 m)

    Figure  13.   The radiation field strength of DVOR beacon within each radiation range (h=30 m,2R=50 m)

    图  14   各个作用距离之内的场强覆盖(h=40 m,2R=50 m)

    Figure  14.   The radiation field strength of DVOR beacon within each radiation range (h=40 m,2R=50 m)

    表  1   顶空盲区仰角范围的统计结果

    Table  1   Statistics results of elevation range of upper space of silence

    地网架高h/m
    102030405060708090100
    飞行高度hM /m顶空盲区仰角范围
    300073°~90°
    400072°~90°
    500072°~90°
    600072°~90°
    下载: 导出CSV

    表  2   图12(a)和(b)中场强值低于90 μV/m的数据点坐标

    Table  2   Coordinates of points with field strength values below 90 μV/m in figure 12(a) and (b)

    hM /m数据点坐标
    3000(40,5.68×10-5)
    4000(50,3.05×10-5)、(55,6.02×10-5)
    5000(60,5.11×10-5)、(65,2.03×10-5)、(70,5.55×10-5)、(75,8.36×10-5)
    6000(70,6.18×10-5)、(75,2.12×10-5)、(80,2.62×10-5)、(85,5.07×10-5)、(90,6.97×10-5)、(95,8.32×10-5)
    下载: 导出CSV

    表  3   图13(a)和(b)中场强值低于90 μV/m的数据点坐标

    Table  3   Coordinates of points with field strength values below 90 μV/m in figure 13(a) and (b)

    hM /m数据点坐标
    3000(40,5.71×10-5)
    4000(50,3.19×10-5)、(55,6.03×10-5)
    5000(60,5.24×10-5)、(65,2.10×10-5)、(70,5.55×10-5)、(75,8.36×10-5)
    6000(70,6.28×10-5)、(75,2.22×10-5)、(80,2.64×10-5)、(85,5.07×10-5)、(90,6.97×10-5)、(95,8.33×10-5)
    下载: 导出CSV

    表  4   图14(a)和(b)中场强值低于90 μV/m的数据点坐标

    Table  4   Coordinates of points with field strength values below 90 μV/m in figure 14(a) and (b)

    hM /m数据点坐标
    3000(50,1.92×10-5)、(55,7.07×10-5)
    4000(60,8.49×10-5)、(65,2.58×10-5)、(70,2.89×10-5)、(75,6.10×10-5)、(80,8.41×10-5)
    5000(75,6.91×10-5)、(80,2.95×10-5)、(85,1.23×10-5)、(90,3.34×10-5)、(95,5.23×10-5)
    6000(90,5.83×10-5)、(95,3.01×10-5)、(100,1.05×10-5)、(105,1.81×10-5)
    下载: 导出CSV
  • [1] 倪育德,卢丹,王颖. 导航原理与系统[M]. 北京:清华大学出版社,2015.

    NI Yude,LU Dan,WANG Ying. Navigation Principles and Systems[M]. Beijing:Tsinghua University Press,2015.(in Chinese)

    [2] 梁东升. 多普勒甚高频全向信标地网反射实例研究[J]. 河南科技,2021,40(8):102- 104. doi:10.3969/j.issn.1003-5168.2021.08.040 doi: 10.3969/j.issn.1003-5168.2021.08.040

    LIANG Dongsheng. A case study of the ground net reflection of Doppler VHF omni-directional range[J]. Henan Science and Technology,2021,40(8):102- 104.(in Chinese). doi:10.3969/j.issn.1003-5168.2021.08.040 doi: 10.3969/j.issn.1003-5168.2021.08.040

    [3]

    LIANG Fei,HU Yue,LI Yuankai. Research on Height and Diameter of Doppler VHF Omnidirectional Beacon in Complex Environment[C]// Hong Kong Society of Mechanical Engineers(HKSME). Proceedings of 2019 International Conference on Aeronautical Materials and Aerospace Engineering(AMAE 2019. PublishingIOP,2019:44- 50. doi:10.1088/1757-899x/608/1/012005 doi: 10.1088/1757-899x/608/1/012005

    [4] 李润贵,郑龙根. 地网对垂直偶极子天线辐射特性的影响[J]. 海军工程大学学报,2007,19(6):99- 102. doi:10.3969/j.issn.1009-3486.2007.06.024 doi: 10.3969/j.issn.1009-3486.2007.06.024

    LI Rungui,ZHENG Longgen. Influence of ground screen on vertical dipole antenna[J]. Journal of Naval University of Engineering,2007,19(6):99- 102.(in Chinese). doi:10.3969/j.issn.1009-3486.2007.06.024 doi: 10.3969/j.issn.1009-3486.2007.06.024

    [5] 袁晓伟,董亮,汪敏,等. 地网对VHF天线性能影响的分析研究[J]. 天文研究与技术,2019,16(2):178- 186.

    YUAN Xiaowei,DONG Liang,WANG Min,et al. Simulation of the influence of ground screen parameters on antenna radiation performance in VHF band[J]. Astronomical Research& Technology,2019,16(2):178- 186.(in Chinese)

    [6]

    BERTIN M,GRAINGER B,MCDERMOTT T. Counterpoise model implementation and new graphical user interface for lightning transient analysis in OpenETran[C]// 2018 IEEE/PES Transmission and Distribution Conference and Exposition(T&D). Denver,CO,USA. IEEE,2018:1- 9. doi:10.1109/tdc.2018.8440272 doi: 10.1109/tdc.2018.8440272

    [7]

    SIRACHANSAWANG P,HORCHUE T,YUTTHAGOWITH P. Design of counterpoise grounding electrodes encased with low resistivity material for transmission towers[C]// 2019 IEEE PES GTD Grand International Conference and Exposition Asia(GTD Asia). Bangkok,Thailand. IEEE,2019:352- 355. doi:10.1109/gtdasia.2019.8715911 doi: 10.1109/gtdasia.2019.8715911

    [8]

    ICAO. Annex 10 to the Convention on International Civil Aviation Aeronautical Telecommunication Volume I[S]. International Civil Aviation Organization,2018.

    [9] 庞秋媛. 陆基导航辐射特性研究[D]. 天津:中国民航大学,2012.

    PANG Qiuyuan. Research on land-based navigation performance[D]. Tianjin:Civil Aviation University of China,2012.(in Chinese)

    [10] 高本庆,吴冠南. 圆形阵天线近场/远场的简便计算方法[J]. 北京理工大学学报,2004,24(8):735- 738. doi:10.3969/j.issn.1001-0645.2004.08.021 doi: 10.3969/j.issn.1001-0645.2004.08.021

    GAO Benqing,WU Guannan. Convenient method of circular array near/far field calculation[J]. Journal of Beijing Institute of Technology,2004,24(8):735- 738.(in Chinese). doi:10.3969/j.issn.1001-0645.2004.08.021 doi: 10.3969/j.issn.1001-0645.2004.08.021

    [11] 倪育德,于颖丽,刘瑞华. 保护区内地形对ILS下滑信标辐射场的影响[J]. 信号处理,2022,38(9):1892- 1902.

    NI Yude,YU Yingli,LIU Ruihua. Influence of terrain in protected area on radiation field of glide slope of ILS[J]. Journal of Signal Processing,2022,38(9):1892- 1902.(in Chinese)

    [12] 李莉. 天线与电波传播[M]. 北京:科学出版社,2009. doi:10.1017/cbo9780511626951.021 doi: 10.1017/cbo9780511626951.021

    LI Li. Antennas and Radio Wave Propagation[M]. Beijing:Science Press,2009.(in Chinese). doi:10.1017/cbo9780511626951.021 doi: 10.1017/cbo9780511626951.021

    [13] 黄锴. 混合方法分析电大目标附近天线受扰方向图[D]. 西安:西安电子科技大学,2012.

    HUANG Kai. Study on EM hybrid methods for analyzing antennas around electrically large target[D]. Xi’an:Xidian University,2012.(in Chinese)

    [14] 王璐璐,黄文华,章勇华,等. 物理光学法分析反射面天线辐射场[J]. 强激光与粒子束,2018,30(6):53- 57. doi:10.11884/HPLPB201830.170463 doi: 10.11884/HPLPB201830.170463

    WANG Lulu,HUANG Wenhua,ZHANG Yonghua,et al. Analysis for pattern of reflector antenna with physical optics method[J]. High Power Laser and Particle Beams,2018,30(6):53- 57.(in Chinese). doi:10.11884/HPLPB201830.170463 doi: 10.11884/HPLPB201830.170463

    [15]

    WANG Binfang,ZHAO Weijiang. Analysis of high-frequency electromagnetic scattering by complex targets using dual flat facet representation[J]. IEEE Transactions on Antennas and Propagation,2015,63(11):4976- 4982. doi:10.1109/tap.2015.2474702 doi: 10.1109/tap.2015.2474702

    [16]

    YAN Ying,ZHAO Weixin,ZHAO Xunwang,et al. Parallel computation of RCS of electrically large platform with coatings modeled with NURBS surfaces[J]. International Journal of Antennas and Propagation,2012,2012:1- 10. doi:10.1155/2012/348052 doi: 10.1155/2012/348052

    [17] 孙福君. 基于DVOR432全向信标的特性研究与辐射验证[D]. 天津:中国民航大学,2019.

    SUN Fujun. Characteristic research and signal radiation verification based on DVOR432[D]. Tianjin:Civil Aviation University of China,2019.(in Chinese)

  • 期刊类型引用(1)

    1. 殷耀文. 面向航电嵌入式系统的多环以太网网络研究. 电子测量技术. 2020(19): 37-43 . 百度学术

    其他类型引用(1)

图(14)  /  表(4)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  3
  • PDF下载量:  14
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-05-14
  • 刊出日期:  2023-12-24

目录

    /

    返回文章
    返回