基于K-L散度和深度聚类的自适应EEGNet-T分布解码算法研究
An Adaptive EEGNet-T Distribution Decoding Algorithm Based on K-L Divergence and Deep Clustering
-
摘要: 脑机接口是脑与外界不通过神经或肌肉建立的交流通路,脑电解码通过归类脑电特征解读输出大脑意图,是影响性能的关键之一。由于脑电信号存在非平稳特性,即使在同一实验过程中脑电信号的特征也会随时间发生变化,导致事先训练好的解码模型精度常常会随时间逐渐降低,不利于脑机接口的长期稳定运行。本研究提出基于K-L散度和深度聚类的自适应EEGNet-T分布解码算法,根据脑电特征变化前后T分布的K-L散度评估脑电的非平稳性并构建基于平稳性差值的目标函数,并以此目标函数调整EEGNet网络参数通过改变非线性映射的方式缩小平稳性差值,从而动态调整融合深度网络与聚类的EEGNet-T分布模型,实现对非平稳脑电的自适应解码。10名被试参与了视觉-听觉的脑机接口实验,并进行较长时间的脑电解码预测。与传统算法相比,本算法在连续128个试次组的任务中获得最高的平均准确率87.85%(p<0.05),并且在前半段实验和后半段实验对比中表现出最强的稳定性,表明该算法能够通过深度网络调整数据特征分布更好地适应脑电信号特征变化,具有更强的解码稳定性,能够保证脑机接口长时间工作的解码精度,为脑机接口实用化提供基础。Abstract: Brain-computer interface (BCI) is a pathway between the brain and the outside world that are not established through nerves or muscles. Electroencephalogram (EEG) decoding is one of the keys to affecting the performance of BCI by classifying EEG features to interpret the output brain intention. Due to the non-stationary characteristics of EEG signal, the characteristics of EEG signal will change with time even in the same experiment process, resulting in the precision of the pre-trained decoding precision model often gradually decreases with time. This study proposes an adaptive EEGNet-T distribution decoding algorithm based on K-L divergence and deep clustering (KL-Deep Clu). The KL-Deep Clu evaluates the non-stationarity of the EEG using the K-L divergence of T distribution before and after the change of EEG characteristics and an objective function based on the change of the stationarity. And adjust the EEGNet network parameters by using this objective function to reduce the stationarity difference by changing the nonlinear mapping. Then EEGNet-T distribution is adaptively modulated according to this function to realize the adaptive decoding of EEG. Ten subjects participated in the visual-auditory BCI experiment, and conducted long-term EEG decoding prediction. Compared to the traditional algorithms, the KL-Deep Clu obtains the highest average accuracy of 87.85% (p<0.05) under 128 trials. And it showed the strongest stability in the first half of the experiment and the second half of the experiment. The stable decoding effect of the KL-Deep Clu ensures the decoding accuracy of BCI for a long time, and provides the basis for the practical application of BCI.