面向高分辨SAR成像的正则参数自学习

Auto-Learning of Parameters for High Resolution SAR Imagery

  • 摘要: 针对基于正则优化的高分辨SAR成像惩罚项系数自学习难点问题,本文提出一种贝叶斯边缘估计(Marginal Estimation Bayes,MEB)算法,以实现目标多先验模型的高精度特征拟合,提升成像特征恢复精度。该方法根据观测数据进行交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)凸优化框架建模,并利用贝叶斯理论推导参数的最大边缘似然分布,同时采用Moreau-Yoshida未经调整的朗之万算法(Moreau-Yoshida Unadjusted Langevin Algorithm,MYULA)实现后验采样求解,引入梯度投影法解决正则参数自学习问题,最后利用自学习参数进行优化成像。该算法可实现多正则项优化多参数协同自适应参数估计。另外,针对可能存在的目标先验非可微问题,本文利用近端算法中的次梯度优化,通过邻近算子来求解非可微先验的次梯度,可实现非可微正则函数的参数自学习。实验部分利用点目标仿真与美国Sandia实验室公布的实际数据。实验结果表明,相对于遍历最优结果,本文所提方法得到的结果与最优值的误差均在15%之内。另外,通过相变热力图(Phase Transition Diagram,PTD)定量验证了算法的有效性,同时将本文算法与其他自学习算法进行对比,验证了算法的实用性。

     

    Abstract: ‍ ‍Aiming at the difficult problem of auto-learning of regularization term coefficients in high-resolution synthetic aperture radar (SAR) imaging based on regularization optimization, a marginal estimation Bayes (MEB) algorithm is proposed, so that the prior features of the target can be fitted properly to improve the accuracy of image feature extraction. Firstly, the alternating direction method of multipliers (ADMM) convex optimization framework is modeled based on the echoed data, and then the maximum marginal likelihood distribution of the parameters is derived. Moreover, the Moreau Yoshida unadjusted Langevin algorithm (MYULA) is used to realize the target extraction and the gradient projection method is introduced to estimate the regularization parameters. Finally, auto-learning parameters are used to optimize the imaging. The proposed algorithm can estimate the parameters of multiple regularization terms. Aiming at non-differentiable part in the prior, the subgradient optimization in the proximal method is used to solve the problem that gradient cannot solve through the adjacent operator, which can realize the parameter auto-learning of the non-differentiable regularization function. In the experimental part, compared with the optimal value of manual debugging, the error between the proposed method and the optimal value is within 15%. The effectiveness of the proposed algorithm is verified by phase transition diagram (PTD). At the same time, this algorithm is compared with other auto-learning algorithms to verify the practicability of the algorithm.

     

/

返回文章
返回