Processing math: 100%

战术自组网下非平稳信道测量与建模

谢诗昂, 张晓瀛, 孔凌劲, 王玲, 魏急波, 刘永胜, 林乐科

谢诗昂, 张晓瀛, 孔凌劲, 王玲, 魏急波, 刘永胜, 林乐科. 战术自组网下非平稳信道测量与建模[J]. 信号处理, 2022, 38(8): 1719-1727. DOI: 10.16798/j.issn.1003-0530.2022.08.017
引用本文: 谢诗昂, 张晓瀛, 孔凌劲, 王玲, 魏急波, 刘永胜, 林乐科. 战术自组网下非平稳信道测量与建模[J]. 信号处理, 2022, 38(8): 1719-1727. DOI: 10.16798/j.issn.1003-0530.2022.08.017
XIE Shiang, ZHANG Xiaoying, KONG Lingjin, WANG Ling, WEI Jibo, LIU Yongsheng, LIN Leke. Measurement and Modeling of Non-Stationary Channel in Tactical Mobile Ad Hoc Network[J]. JOURNAL OF SIGNAL PROCESSING, 2022, 38(8): 1719-1727. DOI: 10.16798/j.issn.1003-0530.2022.08.017
Citation: XIE Shiang, ZHANG Xiaoying, KONG Lingjin, WANG Ling, WEI Jibo, LIU Yongsheng, LIN Leke. Measurement and Modeling of Non-Stationary Channel in Tactical Mobile Ad Hoc Network[J]. JOURNAL OF SIGNAL PROCESSING, 2022, 38(8): 1719-1727. DOI: 10.16798/j.issn.1003-0530.2022.08.017

战术自组网下非平稳信道测量与建模

基金项目: 

国家自然科学基金重点项目 61931020

详细信息
    作者简介:

    谢诗昂 女,1997年生,浙江绍兴人。湖南大学电气与信息工程学院硕士研究生,主要研究方向为无线信道建模。E-mail:chengouseven@163.com

    张晓瀛(通讯作者) 女,1980年生,湖南长沙人。国防科技大学电子科学学院副教授,博士,主要研究方向为无线信道建模、宽带无线通信。E-mail:Zhangxiaoying@nudt.edu.cn

    孔凌劲 男,1998年生,湖北咸宁人。国防科技大学电子科学学院硕士研究生,主要研究方向为无线信道建模。E-mail:1140505747@qq.com

    王 玲(通讯作者) 女,1962年生,湖南长沙人。湖南大学电气与信息工程学院教授,博士,主要研究方向为现代网络与通信技术、信息处理。E-mail:wl_hunu@163.com

    魏急波 男,1967年生,湖北汉川人。国防科技大学电子科学学院教授,博士,主要研究方向为现代通信技术、软件无线电、认知无线网络。E-mail:wjbhw@nudt.edu.cn

    刘永胜 男,1988年生,山东人。中国电波传播研究所工程师,硕士,主要研究方向为无线信道特性测试与建模等。E-mail:liuys_22s@163.com

    林乐科 男,1972年生,山东人。中国电波传播研究所研究员,博士,主要研究方向为对流层传播与环境特性研究。E-mail:llk22s@163.com

Measurement and Modeling of Non-Stationary Channel in Tactical Mobile Ad Hoc Network

  • 摘要: 为研究城市战场环境下战术自组织网络(tactical mobile ad hoc network, TacMAN)通信节点间的信道特性,针对城区场景超短波频段展开信道测量与建模。测量结果表明,TacMAN通信场景下,多径信号存在明显的非平稳性和生灭现象。针对信道非平稳性,首先设计了一种多径识别与跟踪算法,有效地估计出多径信号的存在概率。其次,使用基于马尔科夫链的改进型抽头延迟线(tapped delay line, TDL)模型对实测数据的非平稳过程进行建模。最后基于赤池信息准则(akaike information criterion, AIC)给出了小尺度衰落的统计模型,分析表明双高斯混合分布(bimodal Gaussian mixture distribution, BGMD)和Ricean分布分别是描述模型首径与最强径幅度分布的最佳模型。论文建立的非平稳信道模型可以较好地描述TacMAN场景下信道特性,为提高相关军事通信场景下通信系统的性能提供参考。
    Abstract: ‍ ‍This paper studies the channel characteristics between tactical mobile Ad Hoc network (TacMAN) communication nodes in urban battlefield environment. The channel measurements are performed at the very high frequency (VHF) band in urban areas. The measurement results show that multipath components exhibit obvious birth/death behaviors and non-stationary phenomenon in the region. Firstly, to represent the non-stationary, a multipath recognition and tracking algorithm is designed to estimate the existence probability of multipath components. Secondly, an improved tapped delay line (TDL) model based on Markov chain is used to model the non-stationary process of the measured data. Finally, the statistical model of small scale fading is chosen based on Akaike Information Criterion (AIC). The bimodal Gaussian mixture distribution (BGMD) and Ricean distribution are found to be the optimal distribution for the first path and the strongest path of the channel model, respectively. The non-stationary channel model established in this paper can describe channel characteristics in TacMAN scenarios well, and provide reference for improving the performance of communication systems in related military communication scenarios.
  • 图  1   测量系统连接框图

    Figure  1.   The block diagram of the measuring system

    图  2   发射端设备与接收端天线

    Figure  2.   The transmitter device and receiver antenna

    图  3   非平稳信道建模流程图

    Figure  3.   The flow chart of non-stationary channel model

    图  4   非平稳信道模型示意图

    Figure  4.   Schematic diagram of the non-stationary channel model

    图  5   多径信号散点图

    Figure  5.   Scatter diagram of the multipath signal

    图  6   一阶二状态马尔可夫链

    Figure  6.   The one-order Markov chain with two states

    图  7   多径识别与跟踪结果

    Figure  7.   Results of the multipath recognition and tracking

    图  8   第1径幅度分布及 (a)Rayleigh、Ricean、Nakagami、Weibull分布拟合曲线;(b)BGMD拟合曲线

    Figure  8.   The amplitude distribution of the first channel tap and (a) Rayleigh, Ricean, Nakagami, Weibull fitting curves; (b) BGMD fitting curves

    图  9   第2径幅度分布及拟合曲线

    Figure  9.   The amplitude distribution of the second channel tap and the fitting curves

    图  10   信道冲激响应实测与仿真比较

    Figure  10.   Comparison of measured and simulated CIRs

    图  11   实测数据与仿真数据的RMS-DS的CDF曲线比较

    Figure  11.   Comparison between the CDFs of the measured and the simulated RMS-DS

    表  1   马尔可夫模型参数

    Table  1   Markov model parameters

    多径编号S1P00P11
    11/1
    21/1
    31/1
    40.9900.99
    50.840.070.82
    60.210.810.25
    下载: 导出CSV

    表  2   候选分布AIC权重

    Table  2   AIC weights of the candidate distributions

    多径编号AIC权重
    RayleighRiceanNakagamiWeibullBGMD
    10000.010.99
    20.100.270.180.230.22
    30.180.180.270.260.11
    40.070.070.250.430.18
    50.050.050.200.360.34
    60.120.120.190.320.25
    下载: 导出CSV

    表  3   测量城区MANET信道TDL模型

    Table  3   The TDL model of measured urban MANET channel

    多径编号存在概率S1时延/μs功率/dB最优拟合分布参数
    110-6.45ω=0.65
    μ=[0.02, 0.23]
    σ=[0.01, 0.12]
    211.040s=0.26, σ=0.14
    311.72-5.46m=0.79, ω=0.03
    40.992.79-15.28α=0.05, β=1.51
    50.843.72-22.49α=0.02, β=1.46
    60.214.73-27.28α=0.01, β=1.35
    下载: 导出CSV
  • [1]

    SEN I,MATOLAK D W. Vehicle–vehicle channel models for the 5-GHz band[J]. IEEE Transactions on Intelligent Transportation Systems,2008,9(2):235- 245. doi:10.1109/tits.2008.922881 doi: 10.1109/tits.2008.922881

    [2]

    STERNER U,UPPMAN U. On the robustness of OLSR in a mobile tactical scenario in rural terrain[C]// 2017 International Conference on Military Communications and Information Systems(ICMCIS). Oulu,Finland. IEEE,2017:1- 8. doi:10.1109/icmcis.2017.7956475 doi: 10.1109/icmcis.2017.7956475

    [3]

    STREETER S,BRETON D,CORGAN J. Measuring the non-line-of-sight ultra-high-frequency channel in mountainous terrain:a spread-spectrum,portable channel sounder[R]. Cold Regions Research and Engineering Laboratory(U. S.),2018.

    [4]

    BRETON D,HAEDRICH C,HOCH G,et al. The urban ground-to-ground radio-frequency channel:Measurement and modeling in the ultrahigh frequency band[R]. Engineer Research and Development Center(U. S.),2020.

    [5]

    BRETON D J,HAEDRICH C E. Occluded scatterers and the urban ground-to-ground channel at low UHF[C]// 2020 IEEE USNC-CNC-URSI North American Radio Science Meeting(Joint with AP-S Symposium). Montreal,QC,Canada. IEEE,2020:157- 158. doi:10.23919/usnc/ursi49741.2020.9321618 doi: 10.23919/usnc/ursi49741.2020.9321618

    [6]

    OODO M,SOMA N,FUNADA R,et al. Channel model for broadband wireless communication in the VHF-band[J]. IEICE Technical Report; IEICE Tech. Rep.,2010,110(77):61- 66.

    [7]

    AGBA L,GAGNON F,KOUKI A. Small-scale fading modeling for tactical ad hoc networks[C]// 2006 12th International Symposium on Antenna Technology and Applied Electromagnetics and Canadian Radio Sciences Conference. Montreal,QC,Canada. IEEE,2006:1- 5. doi:10.1109/wamicon.2006.351911 doi: 10.1109/wamicon.2006.351911

    [8]

    QIAN Xing. Peer-to-peer urban channel characterization for military UHF band[D]. Nanyang Technological University,2015. DOI:10.32657/10356/65528. doi: 10.32657/10356/65528

    [9] 何睿斯. 车载网络复杂场景下无线信道测量与建模研究[D]. 北京:北京交通大学,2015. doi:10.17775/cseejpes.2016.00048 doi: 10.17775/cseejpes.2016.00048

    HE Ruisi. Research on wireless channel measurement and modeling in complex scenarios of vehicular networks[D]. Beijing:Beijing Jiaotong University,2015.(in Chinese). doi:10.17775/cseejpes.2016.00048 doi: 10.17775/cseejpes.2016.00048

    [10]

    LI Li,VIGNERON P,BROWN C,et al. Network properties of mobile tactical scenarios[J]. Wireless Communications and Mobile Computing,2014,14(14):1420- 1434. doi:10.1002/wcm.2320 doi: 10.1002/wcm.2320

    [11] 孔凌劲,刘月玲,张校晨,等. 超短波频段复杂城区场景的信道测量与建模[J]. 电波科学学报,2020,35(4):542- 550.

    KONG Lingjin,LIU Yueling,ZHANG Xiaochen,et al. Channel measurement and modeling for VHF bands in typical urban scenarios[J]. Chinese Journal of Radio Science,2020,35(4):542- 550.(in Chinese)

    [12] 高浩阳,张晓瀛,赵海涛,等. 受限多普勒功率谱建模方法研究[J]. 信号处理,2021,37(7):1217- 1225.

    GAO Haoyang,ZHANG Xiaoying,ZHAO Haitao,et al. Rechearch on restricted Doppler power spectrum modeling[J]. Journal of Signal Processing,2021,37(7):1217- 1225.(in Chinese)

    [13]

    HASSAN N,KÄSKE M,SCHNEIDER C,et al. Measurement based determination of parameters for in-stationary TDL models with reduced number of taps[J]. 2019 13th European Conference on Antennas and Propagation(EuCAP),2019:1- 5. doi:10.1049/iet-map.2019.0945 doi: 10.1049/iet-map.2019.0945

    [14]

    STEINBAUER M,OZCELIK H,HOFSTETTER H,et al. How to quantify multipath separation[J]. IEICE transactions on electronics,2002,85(3):552- 557.

    [15]

    CAI Xuesong,ZHANG Guojin,ZHANG Chao,et al. Dynamic channel modeling for indoor millimeter-wave propagation channels based on measurements[J]. IEEE Transactions on Communications,2020,68(9):5878- 5891. doi:10.1109/tcomm.2020.3001614 doi: 10.1109/tcomm.2020.3001614

    [16]

    SCHUSTER U G,BOLCSKEI H. Ultrawideband channel modeling on the basis of information-theoretic criteria[J]. IEEE Transactions on Wireless Communications,2007,6(7):2464- 2475. doi:10.1109/twc.2007.05857 doi: 10.1109/twc.2007.05857

图(11)  /  表(3)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  34
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 刊出日期:  2022-08-24

目录

    /

    返回文章
    返回