基于深度学习的RGBD图像协同显著目标检测

Deep Learning-based Co-salient Object Detection on RGBD Images

  • 摘要: 本文旨在研究一种基于深度学习的RGBD图像协同显著目标检测模型。首先,本文构建了多分支的编码器结构,有效地提取RGBD图像的深层卷积特征;然后,使用多模态特征融合模块充分融合来自编码器的深层特征;最后,通过基于残差基本块的解码器来预测得到显著性图。此外,本文以深层次监督的方式对整个网络进行约束优化。在两个公开数据集上的测试结果表明,所提模型在预测精度上优于当前6种主流模型,这其中我们的显著性图呈现出更精确的边缘细节。

     

    Abstract: ‍ ‍This paper aims to propose a co-salient object detection model on RGBD images based on deep learning algorithm. Firstly, this paper constructs a multi-stream encoder structure which can be effectively employed to extract deep convolution features of RGBD images. Then, a multi-modal feature fusion module is used to sufficiently integrate the deep features from the encoder. Finally, a decoder equipped with the residual connection and deep supervision is designed to generate saliency maps. The experimental results on two public datasets show that the performance of our model is superior to the six state-of-the-art models, where the saliency map of our model presents more precise boundary details.

     

/

返回文章
返回