基于改进Wave-U-Net跳跃连接的盲源分离算法
Blind Source Separation Algorithm Based on Improved Wave-U-Net Skip Connection
-
摘要: 为了进一步提升现有盲源分离算法的分离性能,本文在Wave-U-Net的基础上提出了一种全尺度跳跃连接模型。首先为了解决Wave-U-Net下采样过程中信号特征丢失问题,该模型在跳跃连接中增加了卷积操作,通过对不同时间尺度的特征图进行连接,有效地结合了信号的浅层特征和深层特征,提升了模型的分离性能。针对Wave-U-Net最佳深度取值和全尺度跳跃连接模型的参数过多的问题,本文进一步提出了多尺度跳跃连接模型。在多尺度跳跃连接模型中,通过嵌入不同深度的Wave-U-Net来代替跳跃连接中的卷积操作,在牺牲一部分分离性能下减少了模型参数,该模型共享下采样块来降低模型训练时间以及模型最佳深度取值带来的影响。仿真实验表明,相比于其他基线模型,本文提出的两种模型能显著提升信号分离性能,在SDR,SIR,SAR提升奖将近3~4 dB。Abstract: This paper proposes a full-scale skip connection model based on Wave-U-Net to further improve the separation performance of existing blind source separation algorithms. First, to solve the problem of signal feature loss during the Wave-U-Net Down-sampling process, the model adds a convolution operation to the skip connection. By connecting the feature maps of different time scales, it effectively combines the shallow features of the signal and Deep features improve the separation performance of the model. Aiming at the problem of the optimal depth of Wave-U-Net and the excessive parameters of the full-scale skip connection model, this paper further proposes a multi-scale skip connection model. In the multi-scale skip connection model, the convolution operation in skip connection is replaced by embedding Wave-U-Net of different depths, which reduces the model parameters at the expense of part of the separation performance. The model shares the Down-sampling block to reduce the model training time and the influence of the optimal depth of the model. Simulation experiments show that compared with other baseline models, the two models proposed in this paper can significantly improve the signal separation performance, and the SDR, SIR, and SAR increase awards are nearly 3~4 dB.