最小方差无失真响应波束形成解卷积后处理算法

Deconvolution Post-processing Algorithm of Minimum Variance Distortionless Response Beamformer

  • 摘要: 为提高最小方差无失真响应(Minimum Variance Distortionless Response,MVDR)波束形成算法的方位分辨能力,本文将MVDR算法的输出功率谱重新建模为卷积的形式,并运用两种解卷积技术对MVDR的方位谱进行后处理。该算法将角度空间中心位置的单个声源的MVDR方位谱当作点扩散函数(Point Spreading Function,PSF),并运用Richardson-Lucy算法和快速迭代收缩阈值算法(Fast Iterative Shrinkage-Thresholding Algorithm,FISTA)分别对MVDR(MVDR-RL,MVDR-FISTA)的方位谱进行解卷积后处理,获得背景级更低的MVDR-RL和MVDR-FISTA方位谱,同时提高了分辨能力和估计精度。仿真实验显示了所提算法的良好性能。

     

    Abstract: In order to improve the azimuth estimation capability of the minimum variance distortionless response (MVDR) beamforming algorithm, the output power spectrum of the MVDR algorithm was reformed as a convolution form, two deconvolution post-processing techniques were proposed to deconvolve the azimuth spectrum of MVDR. The algorithms take the MVDR azimuth spectrum of a single sound source at the center of the angular space as a point spreading function (PSF), and use the Richardson-Lucy algorithm and the fast iterative shrinkage-thresholding algorithm (FISTA) to deconvolute the MVDR (MVDR-RL, MVDR-FISTA) azimuth spectrum. The MVDR-RL and MVDR-FISTA azimuth spectrum has lower background level, higher resolution, and higher estimation accuracy. Simulation experiments show the good performance of the proposed algorithm.

     

/

返回文章
返回