人脸视频深度伪造与防御技术综述

An Overview of Deepfake Forgery and Defense Techniques

  • 摘要: 近年来,得益于深度生成模型的发展,人脸的操控技术取得了巨大突破,以DeepFake为代表的人脸视频深度伪造技术在互联网快速流行,受到了学术界和工业界的广泛重视。这种深度伪造技术通过交换原始人脸和目标人脸的身份信息或编辑目标人脸的属性信息来合成虚假的人脸视频。人脸深度伪造技术激发了很多相关的娱乐应用,如使用面部替换技术将使用者的人脸替换到某段电影片段中,或使用表情重演技术来驱动某个著名人物的静态肖像等。但当前人脸深度伪造技术仍处于快速发展阶段,其生成的真实感和自然度仍有待进一步提升。另一方面,这类人脸深度伪造技术也很容易被不法分子恶意使用,用来制作色情电影、虚假新闻,甚至被用于政要人物来制造政治谣言等,这对国家安全与社会稳定都带来了极大的潜在威胁,因此伪造人脸视频的防御技术至关重要。为了降低深度伪造人脸视频所带来的负面影响,众多学者对伪造人脸视频的检测鉴别技术进行了深入研究,并从不同视角提出了一系列防御方法。然而由于数据集分布形式单一、评价标准不一致、主动性不足等问题,使得防御技术在走向实用的道路上仍有很长一段距离。事实上,人脸深度伪造与防御技术的研究仍旧处在发展期,其技术的内涵与外延正在快速的更新与迭代。本综述将对迄今为止的主要研究工作进行科学系统的总结与归纳,并对现有技术的局限性做简要分析。最后,本文将探讨人脸深度伪造与检测技术的潜在挑战与发展方向,为领域内未来的研究工作提供借鉴。

     

    Abstract: Benefiting from the development of the deep generative model, face manipulation technology has made great breakthroughs. The deep face forgery technology, represented by Deepfake, has rapidly become popular on the Internet and received extensive attention from academia and industry. This deep forgery technique synthesizes fake face videos by exchanging the identity information between original and target faces or by editing the attribute information of target faces. The deep face forgery technique has inspired many related entertainment applications, such as using facial substitution to replace the user's face in a movie clip, or using expression reenactment to drive a static portrait of a famous person. However, the current deep face forgery technology is still in the fast-growing stage, and its authenticity and naturality require further improvement. On the other hand, this kind of deep face forgery can easily be used by malicious criminals to produce pornographic movies, fake news, or even political rumors about important dignitaries, which is a great potential threat to national security and social stability, so the defense technology of face forgery videos is crucial. In order to reduce the negative impact of deep face forgery videos, many researchers have investigated the detection and identification techniques of face forgery videos, proposing a series of defense methods from different perspectives. Unfortunately, due to the single form of dataset distribution, inconsistent evaluation metrics and lack of initiative, etc., there is still a long way to go before the detection technology can be applied practically. In fact, the research on deep face forgery and detection techniques remains in the developmental stage, their connotations and extensions are being rapidly updated and iterated. In this review, we will make a scientific and systematic summary of the main research work so far, and briefly analyze the limitations of existing technologies. Finally, we will discuss the potential challenges and development directions of deep face forgery and detection technology, in order to provide insights for future research work in the field.

     

/

返回文章
返回