Direction of Arrival Estimation Method using Deviation from the Median based Correntropy under Impulsive Noise
-
摘要: 作为阵列信号处理的一个基本问题,波达方向估计在现代通信领域有着广泛的应用。常规估计方法通常基于高斯噪声假设。 而当阵列接收数据包含 Alpha 稳定分布脉冲噪声时算法将完全失效。针对 Alpha 稳定分布噪声下的波达方向估计问题,本文定义了一种改进的相关熵算子——中值离差相关熵,并从理论上证明了它的有界性。 以此为基础结合 MUSIC 算法提出了一种波达方向估计新方法。该方法不需要噪声先验知识,且在脉冲噪声环境中具有鲁棒性。仿真实验表明, 即使在短快拍、强脉冲噪声的恶劣环境下,本文方法依然具有良好的性能。
-
关键词:
- 波达方向估计 /
- 脉冲噪声 /
- Alpha 稳定分布 /
- 相关熵
Abstract: As a fundamental issue of array signal processing, direction of arrival estimation is widely applied in contemporary communication. Conventional direction of arrival estimation schemes are primarily developed under Gaussian noise assumptions. However, when the received signal contains alpha-stable distribution impulsive noise, second order statistics will become unbounded and the conventional direction of arrival estimation schemes will become ineffective. To overcome this defect, a modified correntropy operator——deviation from the median based correntropy is first defined and its boundedness property is proved to ensure its validity in the alpha-stable distribution noise environment. Based on the modified correntropy operator and MUSIC algorithm, a novel direction of arrival estimation method is proposed. The proposed scheme not only requires no prior knowledge of background noise but also shows robustness to the impulsiveness of noise. Comprehensive Monte Carlo simulations verify the superior performance of the proposed method under many impulsive noise scenario, even when there are few snapshots and the impulsiveness of noise is strong. -
-
[1] BARTHELME A, UTSCHICK W.A machine learning approach to DoA estimation and model order selection for antenna arrays with subarray sampling[J].IEEE Transactions on Signal Processing, 2021, 69:3075-3087 [2] PAPAGEORGIOU G K, SELLATHURAI M, ELDAR Y C.Deep networks for direction-of-arrival estimation in low SNR[J].IEEE Transactions on Signal Processing, 2021, 69:3714-3729 [3] QIANG Xiaowei, LIU Yang, FENG Qingxia, et al.Adaptive DOA estimation with low complexity for wideband signals of massive MIMO systems[J].Signal Processing, 2020, 176:- [4] SCHMIDT R.Multiple emitter location and signal parameter estimation[J].IEEE Transactions on Antennas and Propagation, 1986, 34(3):276-280 [5] ROY R, KAILATH T.ESPRIT-estimation of signal parameters via rotational invariance techniques[J].IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7):984-995 [6] SHAO M, NIKIAS C L.Signal processing with fractional lower order moments: Stable processes and their applications[J].Proceedings of the IEEE, 1993, 81(7):986-1010 [7] 邱天爽.相关熵与循环相关熵信号处理研究进展[J].电子与信息学报, 2020, 42(1):105-118. QIU Tianshuang.Development in signal processing based on correntropy and cyclic correntropy[J].Journal of Electronics & Information Technology, 2020, 42(1):105-118.
[8] TSAKALIDES P, NIKIAS C L.The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments[J].IEEE Transactions on Signal Processing, 1996, 44(7):1623-1633 [9] LIU T H, MENDEL J M.A subspace-based direction finding algorithm using fractional lower order statistics[J].IEEE Transactions on Signal Processing, 2001, 49(8):1605-1613 [10] BELKACEMI H, MARCOS S.Robust subspace-based algorithms for joint angleDoppler estimation in non-Gaussian clutter[J].Signal Processing, 2007, 87(7):1547-1558 [11] SANTAMARIA I, POKHAREL P P, PRINCIPE J C.Generalized correlation function: Definition,properties,and application to blind equalization[J].IEEE Transactions on Signal Processing, 2006, 54(6):2187-2197 [12] LIU Weifeng, POKHAREL P P, PRINCIPE J C.Correntropy: properties and applications in non-Gaussian signal processing[J].IEEE Transactions on Signal Processing, 2007, 55(11):5286-5298 [13] 邱天爽, 栾声扬, 田全, 等.相关熵与循环相关熵信号处理教程[M]. 北京: 电子工业出版社, 2021. QIU Tianshuang, LUAN Shengyang, TIAN Quan, et al.Signal processing of correntropy and cyclic correntropy[M]. Beijing: Publishing house of electronics industry, 2021. (in Chinese)
[14] ZHANG Jinfeng, QIU Tianshuang, SONG Aimin, et al.A novel correntropy based DOA estimation algorithm in impulsive noise environments[J].Signal Processing, 2014, 104:346-357 [15] GUAN Sheng, CHEN Jin, LI Kaikai, et al.General correntropy based DOA estimation for coherent source with impulsive noise[M]//Lecture Notes in Electrical Engineering. Singapore: Springer Singapore, 2019: 159-167. [16] CHEN Jin, GUAN Sheng.Correntropy-based DOA estimation algorithm under impulsive noise environments[J].EURASIP Journal on Wireless Communications and Networking, 2020, 2020(1):1-20 [17] TSAKALIDES P, NIKIAS C L.Maximum likelihood localization of sources in noise modeled as a stable process[J].IEEE Transactions on Signal Processing, 1995, 43(11):2700-2713 [18] TIAN Quan, QIU Tianshuang, MA Jitong, et al.Robust fractional lower order correntropy algorithm for DOA estimation in impulsive noise environments[J].IEICE Transactions on Communications, 2021, E104.B(1):35-48 -
期刊类型引用(1)
1. 吴华芹. 云计算海量光纤数据的差异化调度研究. 激光杂志. 2019(01): 155-158 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 171
- HTML全文浏览量: 15
- PDF下载量: 92
- 被引次数: 2