基于稀疏差分协同进化的多源遥感场景分类攻击

Multi-source Remote Sensing classification attack based on sparse differential coevolution

  • 摘要: 随着深度学习技术的迅猛发展,各种相似的骨干网络被用于多源遥感分类任务中,取得了很高的识别正确率。然而,由于神经网络极易受到对抗样本的攻击,这给遥感任务带来了很高的安全隐患。以往的对抗攻击方法可有效攻击单波段遥感图像的分类器,但不同波段的攻击并不耦合,这导致现有方法在现实世界中难以用于多源分类器的攻击。针对多源遥感的特性,本文提出了一种新的基于稀疏差分协同进化的对抗攻击方法:投放一定数量包含稀疏多源噪声信息的种子,通过限定噪声点在多源遥感中具有相同位置,实现多源对抗攻击的耦合,按种子信息制作对抗样本,利用上一代的种子(父代)进行变异与交叉,产生新的种子(子代),同样制作对抗样本,综合比较多源对抗样本的攻击效果,保留效果更好的种子,重复此过程,最终可得到高度耦合且攻击效果最好的多源遥感对抗样本。实验证明了本文方法的可行性:在单点攻击下,61.38%的光学图像和38.93%的合成孔径图像被成功转化为对抗样本,光学和合成孔径分类器中都无法正确识别的区域从5.83%升至55.10%。

     

    Abstract: With the rapid development of deep learning, the same set of backbone network architectures have often been adopted for multi-source remote sensing image classification and achieved impressive results. However, this raises severe security issues for remote sensing task as these models are known to be vulnerable to adversarial attacks. Conventional adversarial attack methods are able to fool single-band images classifier, but the adversarial perturbations of different band are not coupling, that results in its unavailability in multi-source remote sensing images attack. In this paper, we propose an adversarial attack method with consistent perturbation pattern across multi-source images, using sparse differential coevolution: firstly, generate some random vectors that contains the information of multi-source adversarial perturbations and generate the adversarial examples according to the vectors. Then generates new parameter vectors by crossover operator and mutation operator and generate the adversarial examples, too. Finally, evaluate the adversarial examples and choose the better vectors to survive. Repeat this progress and we can get the best multi-source adversarial examples. Experimental results demonstrate the feasibility of our strategy. Under one-pixel attack of our method, 61.38% of optical images and 38.93% of SAR images can be crafted to adversarial images.

     

/

返回文章
返回