基于1DCNN-BiLSTM网络的ADS-B欺骗式干扰检测
ADS-B deceptive jamming detection based on 1DCNN-BiLSTM network
-
摘要: 在空中交通监视系统中使用的现代技术中,广播式自动相关监视(ADS-B)是当今最引人注目的一种,它具有更高的准确性和更少的人为依赖。但其在没有任何认证和加密的情况下广播消息,信息可能会被恶意伪造或修改。本文介绍了两种基于1DCNN-BiLSTM的网络模型,此模型根据ADS-B时域采样数据提取真实信号与欺骗信号的特征并识别出欺骗信号。在航迹较短时,该模型能提取ADS-B信号详细的时间特征信息;在航迹较长时,先利用一维卷积神经网络(1D-CNN)提取每条航迹内每个空中位置的详细的时间特征信息,然后利用双向长短期记忆网络(BiLSTM)挖掘不同空中位置之间的空间关系。经过仿真实验,1DCNN-BiLSTM网络与只具有时间特征提取的网络相比,例如DNN和LSTM,有更好的检测效果。
Abstract: Among the modern technologies used in air traffic surveillance systems, Automatic Dependent Surveillance-Broadcast (ADS-B) is the most eye-catching one today, with higher accuracy and less human dependence. However, it broadcast messages without any authentication and encryption, and the information may be maliciously forged or modified. This article introduced two network models based on 1DCNN-BiLSTM. This model extracted the characteristics of the real signal and the spoofed signal based on the ADS-B time-domain sampling data and identified the spoofed signal. When the trajectory was short, the model could extract the detailed time structure information of the ADS-B signal; when the trajectory was long, first used one-dimensional Convolutional Neural Network (1D-CNN) to extract each air position in each trajectory, Then used the Bi-directional Long Short-Term Memory (BiLSTM) to mine the spatial relationship between different air positions. After simulation experiments, the 1DCNN-BiLSTM network has a better detection effect than the network that only has time feature extraction, such as DNN and LSTM.