基于无线信道状态信息的密钥提取方案设计与实现

郭登科, 熊俊, 高玉威, 曹阔, 马东堂

郭登科, 熊俊, 高玉威, 曹阔, 马东堂. 基于无线信道状态信息的密钥提取方案设计与实现[J]. 信号处理, 2021, 37(3): 336-348. DOI: 10.16798/j.issn.1003-0530.2021.03.003
引用本文: 郭登科, 熊俊, 高玉威, 曹阔, 马东堂. 基于无线信道状态信息的密钥提取方案设计与实现[J]. 信号处理, 2021, 37(3): 336-348. DOI: 10.16798/j.issn.1003-0530.2021.03.003
GUO Dengke, XIONG Jun, GAO Yuwei, CAO Kuo, MA Dongtang. Design and Implementation of Key Extraction Scheme Based on Wireless Channel State Information[J]. JOURNAL OF SIGNAL PROCESSING, 2021, 37(3): 336-348. DOI: 10.16798/j.issn.1003-0530.2021.03.003
Citation: GUO Dengke, XIONG Jun, GAO Yuwei, CAO Kuo, MA Dongtang. Design and Implementation of Key Extraction Scheme Based on Wireless Channel State Information[J]. JOURNAL OF SIGNAL PROCESSING, 2021, 37(3): 336-348. DOI: 10.16798/j.issn.1003-0530.2021.03.003

基于无线信道状态信息的密钥提取方案设计与实现

基金项目: 国家自然科学基金资助项目(61372099,U19B2024,61601480,61931020)
详细信息
  • 中图分类号: TN918

Design and Implementation of Key Extraction Scheme Based on Wireless Channel State Information

  • 摘要: 基于无线信道状态信息(Channel State Information,CSI)的密钥提取技术可以利用无线信道的短时互易性和时空唯一性实现合法通信双方之间的共享密钥分发,且具有计算复杂度低和无需额外设施辅助的优点,是上层加密方案的有效补充。本文分别为无线通信中的合法节点和窃听节点设计了基于CSI的密钥提取方案和被动窃听方案,并在时分双工正交频分复用通信体制下实现了所提方案的原型系统。基于实现的原型系统,本文在室内和室外两种典型通信环境中的节点静止和移动两种情况下,进行了存在窃听节点场景下的密钥提取测试实验。通过对测试结果的分析,验证了无线信道的短时互易性和时空唯一性,并表明所提密钥提取方案在典型通信场景下可以实现较高的密钥性能和系统安全性。
    Abstract: Since wireless channels have the characteristics of short-term reciprocity and space-time uniqueness, key extraction based on wireless channel state information (CSI) can establish shared key between legitimate communication parties. This technique is considered to be an effective complement to the upper layer encryption scheme with the advantages of low computational complexity and no need of additional facilities. In this paper, we designed a CSI-based key extraction scheme for legitimate wireless communication nodes, and a passive eavesdropping scheme for eavesdropping nodes. Furthermore, we implemented the prototype system of proposed schemes under the time division duplex orthogonal frequency division multiplexing communication system. Finally, we conducted key extraction test experiments in the presence of eavesdropping nodes under two typical communication environments (indoor and outdoor), in each of which we considered both static and mobile nodes. Analysis of test results verify the short-term reciprocity and space-time uniqueness of the wireless channel, and show that the proposed key extraction scheme can achieve considerable key performance and strong system security in typical communication scenarios.
  • [1] Musa S M.Network security and cryptography: A self-teaching introduction[M]. Mercury Learning & Information, 2018.
    [2] Zhan Furui, Zhao Zixiang, Chen Yuhua, et al.On the using of Renyi' s quadratic entropy for physical layer key generation[J].Computer Communications, 2019, 137:32-43
    [3] Jana S, Premnath S N, Clark M, et al.On the effectiveness of secret key extraction from wireless signal strength in real environments[C] // Proceedings of the 15th Annual International Conference on Mobile Computing and Networking. ACM, 2009: 321-332.
    [4] Zhang J, Woods R, Duong T Q, et al.Experimental study on key generation for physical layer security in wireless communications[J].IEEE Access, 2016, 4:4464-4477
    [5] Goldsmith A.Wireless communications[M]. Cambridge University Press, 2005.
    [6] Zhang J, Duong T Q, Marshall A, et al.Key generation from wireless channels: A review[J].IEEE Access, 2016, 4:614-626
    [7] Mathur S, Trappe W, Mandayam N, et al.Radio-telepathy: Extracting a secret key from an unauthenticated wireless channel[C] // Proceedings of the 14th ACM International Conference on Mobile Computing and Networking. 2008: 128-139.
    [8] Patwari N, Croft J, Jana S, et al.High-rate uncorrelated bit extraction for shared secret key generation from channel measurements[J].IEEE Transactions on Mobile Computing, 2009, 9(1):17-30
    [9] Ruotsalainen H, Zhang J, Grebeniuk S.Experimental investigation on wireless key generation for low-power wide-area networks[J].IEEE Internet of Things Journal, 2019, 7(3):1745-1755
    [10] Rottenberg F, Nguyen T H, Dricot J M, et al.CSI-based versus RSS-based secret-key generation under correlated eavesdropping[J].IEEE Transactions on Communications, 2020, :-
    [11] Zhan F, Yao N, Gao Z, et al.Efficient key generation leveraging wireless channel reciprocity for MANETs[J].Journal of Network and Computer Applications, 2018, 103:18-28
    [12] Shehadeh Y E H, Alfandi O, Hogrefe D.Towards robust key extraction from multipath wireless channels[J].Journal of Communications and Networks, 2012, 14(4):385-395
    [13] Yuliana M.An efficient key generation for the Internet of Things based synchronized quantization[J].Sensors, 2019, 19(12):2674-
    [14] Aono T, Higuchi K, Ohira T, et al.Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels[J].IEEE Transactions on Antennas and Propagation, 2005, 53(11):3776-3784
    [15] Premnath S N, Jana S, Croft J, et al.Secret key extraction from wireless signal strength in real environments[J].IEEE Transactions on Mobile Computing, 2012, 12(5):917-930
    [16] Xi W, Duan M, Bai X, et al.KEEP: Secure and efficient communication for distributed IoT devices[J].IEEE Internet of Things Journal, 2020, :-
    [17] 袁瑞, 彭林宁, 李古月, 等.不同环境下无线信道密钥生成性能研究[J].密码学报, 2020, 7(2):261-273
计量
  • 文章访问数:  206
  • HTML全文浏览量:  13
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-20
  • 修回日期:  2021-01-23
  • 发布日期:  2021-03-24

目录

    /

    返回文章
    返回