利用信号功率谱密度的麦克风阵列噪声消除方法

Microphone Array Noise Elimination Method Using Signal Power Spectral Density

  • 摘要: 本文研究了一种在背景噪声和干扰噪声存在的情况下基于麦克风阵列的噪声消除方法,具有准确的指向性。波束形成可以更好的获取指定方向的增强语音及抑制其它方向的噪声的效果。而现已存在的波束形成的方法处理后,增强之后的语音仍然会存在部分的干扰噪声。针对这样的问题,本文提出了一种利用信号功率谱密度比值的广义旁瓣消除波束形成方法来进一步实现对背景噪声和干扰噪声的抑制。此外,本文还进一步利用深度神经网络的方法,通过训练多目标函数下的掩蔽值结合最优改进对数谱幅度,做后置滤波可以更高效地对残留干扰噪声进行消除。本文中通过对比实验,比较了不同的基线方法,更好地验证了所提出算法的有效性。

     

    Abstract: In this paper, a noise cancellation method using microphone array in the presence of interference noise and background noise is studied, where the signal directivity is utilized. Beamforming captures the speech in the specified direction and suppresses the noise in other directions. After beamforming, however, there will still be some residual interference noise in the enhanced speech. To overcome this problem, this paper proposes a generalized sidelobe cancellation beamforming method that uses the signal power spectral density ratio to further achieve the suppression of background noise and interference noise. In addition, this paper utilizes deep neural network to improve the logarithmic spectral amplitude estimation by training the masking value under the multi-objective function. After that, the post-filtering is used to eliminate the residual interference noise. Finally, different baseline methods are compared in the experiments, and the effectiveness of the proposed algorithm is also verified.

     

/

返回文章
返回