采用模糊控制的网络视频质量评估方法

史志明, 黄诚惕

史志明, 黄诚惕. 采用模糊控制的网络视频质量评估方法[J]. 信号处理, 2019, 35(1): 115-124. DOI: 10.16798/j.issn.1003-0530.2019.01.014
引用本文: 史志明, 黄诚惕. 采用模糊控制的网络视频质量评估方法[J]. 信号处理, 2019, 35(1): 115-124. DOI: 10.16798/j.issn.1003-0530.2019.01.014
SHI Zhi-ming, HUANG Cheng-ti. Network Video Quality Assessment Method using Fuzzy Control[J]. JOURNAL OF SIGNAL PROCESSING, 2019, 35(1): 115-124. DOI: 10.16798/j.issn.1003-0530.2019.01.014
Citation: SHI Zhi-ming, HUANG Cheng-ti. Network Video Quality Assessment Method using Fuzzy Control[J]. JOURNAL OF SIGNAL PROCESSING, 2019, 35(1): 115-124. DOI: 10.16798/j.issn.1003-0530.2019.01.014

采用模糊控制的网络视频质量评估方法

基金项目: 福建省教育厅中青年教师教育科研项目(JAT160032);泉州市科技计划项目(2018C106R);华侨大学高层次人才引进项目(600005-Z14Y0041)
详细信息
    通讯作者:

    史志明   E-mail: szmi_2007@126.com

  • 中图分类号: TN911.22

Network Video Quality Assessment Method using Fuzzy Control

More Information
    Corresponding author:

    SHI Zhi-ming   E-mail: szmi_2007@126.com

  • 摘要: 随着宽带通信技术的快速发展,网络视频业务迅猛普及。尽管人们可以方便收看网络视频,但是由于网络视频在传输过程中,会受到各种因素干扰,降低用户感受。本文针对网络视频质量评估问题,提出一种采用模糊控制的评估方法。首先分析了影响视频质量的网络、应用、图像等主要指标;通过仿真实验提取了不同情况下的影响指标,构造了三层模糊控制的评估模型;为了进一步提高方法的准确性,对每个模糊层赋予了不同权值,同时给出了两种去模糊化方法。该方法综合考虑了不同影响因素,适用性广,且具有较好的实用性。实验结果表明,该算法能够有效地提高视频质量评估的主客观相似度。
    Abstract: With the rapid development of broadband communication technology, the service of network video was popular anywhere. Although people can watch network video conveniently, network video quality may be impaired by various factors during the transmission process, leading to the quality of experience (QoE) decrease. In order to solve the problem of network video quality assessment, an assessment method using fuzzy control was proposed in this paper. Firstly the main impair indexes of video quality were analyzed,such as network, application and image indexes; secondly these indexes were extracted by simulation experiments under different environment, next three levels fuzzy control of assessment model was built; to further improve the accuracy of this method, every fuzzy level was given different weight, and two kinds of de-fuzzification methods were given. This method considered different factors, and had wide applicability and good practicability. Experimental results show that the proposed method can improve the similarity between the subjective and objective better.
  • [1] Christos G.Bampis,Zhi Li,Ioannis Katsavounidis,Alan CBovik.Recurrent and Dynamic Models for Predicting Streaming Video Quality of Experience[J].IEEE Transactions on Image Processing, 2018, 27(7):3316-3331
    [2] Fan Li, Fu Shuang, Ziyi Liu, Xueming Qian.A Cost-Constrained Video Quality Satisfaction Study on Mobile Devices[J].IEEE Transactions on Multimedia, 2017, 20(5):1154-1168
    [3] Felix Mercer Moss, Ke Wang, Fan Zhang, Roland Baddeley, David R.BullOn the Optimal Presentation Duration for Subjective Video Quality Assessment[J].IEEE Transactions on Circuits and Systems for Video Technology, 2015, 26(11):1977-1987
    [4] Abdul Hameed, Rui Dai, Benjamin Balas.A Decision-Tree-Based Perceptual Video Quality Prediction Model and Its Application in FEC for Wireless Multimedia Communications[J].IEEE Transactions on Multimedia, 2016, 18(4):764-774
    [5] A.Murat Demirtas,Amy RReibman,Hamid Jafarkhani. Full-Reference Video Quality Estimation for Videos With Different Spatial Resolutions[J].IEEE Transactions on Circuits and Systems for Video Technology, 2015, 26(11):1988-2000
    [6] Sudeng Hu, Lina Jin, Hanli Wang, Yun Zhang, Sam Kwong, C.C. Jay KuoObjective Video Quality Assessment Based on Perceptually Weighted Mean Squared Error[J].IEEE Transactions on Circuits and Systems for Video Technology, 2016, 27(9):1844-1855
    [7] Kongfeng Zhu, Chengqing Li, Vijayan Asari, Dietmar Saupe.No-reference video quality assessment based on artifact measurement and statistical analysis[J].IEEE Transactions on Circuits and System for Video Technology, 2014, 25(4):533-546
    [8] Maria Torres Vega, Decebal Constantin Mocanu, Jeroen Famaey, Stavros Stavrou, Antonio Liotta.Deep learning for quality assessment in live video streaming[J].IEEE Signal Processing Letters, 2017, 24(6):736-740
    [9] Markus Fiedler, Tobias Hossfeld, Phuoc Tran-Gia.A generic quantitative relationship between quality of experience and quality of service[J].IEEE Network, 2010, 24(2):36-41
    [10] Y.Ben youssef, A.Mellouk, M.Afif, S.Tabbane. Video Quality assessment based on statistical selection approach for QoE factors dependency[C]// IEEE Global Communications Conference 2016. Washington, DC:USA, 2016:1-6.
    [11] Fan Zhang, David R.BullA perception-based hybrid model for video quality assessment[J].IEEE Transactions on Circuits and Systems for Video Technology, 2015, 26(6):1017-1028
    [12] 宋佳润,苏洪磊,杨付正.网络视频质量包层评估模型研究[J].西安电子科技大学学报, 2013, 47(6):37-43
    [13] Song Jiarun, Su Honglei, Yang Fuzheng.Packet Layer Assessment Model for Networked Video Quality[J].Journal of Xi’An Jiaotong University, 2013, 47(6):37-43
    [14] 余春艳,吴丽丽,陈国龙,郑维宏.基于运动剧烈程度的无参考视频质量评价模型[J].光子学报, 2013, 42(7):864-871
    [15] Yu Chunyan, Wu Lili, Chen Guolong.A No-reference Assessment Model for Video Quality Based on Movement Activity[J].Acta Photonica Sinica, 2013, 42(7):864-871
    [16] 刘河潮,常义林,陈玉峰.网络视频的丢包失真评估[J].哈尔滨工业大学学报, 2014, 46(5):81-86
    [17] Liu Hechao, Chang Yilin, Chen Yufeng.H.264AVC video quality assessment over IP network based on packet loss[J].Journal of Harbin institute of technology, 2014, 46(5):81-86
    [18] Ricky K.P.Mok, Edmond W.W.Chan, Rocky K.C.Chang. Measuring the Quality of Experience of HTTP Video Streaming[C]// 12th IFIP/IEEE International Symposium on Integrated Network Management and Workshops 2011 .Dublin:Ireland, 2011:485-492.
    [19] Taichi Kawano, Kazuhisa Yamagishi, Keishiro Watanabe, et al.No Reference Video Quality Assessment Model For Video Streaming Services[C]//2010 18th International Packet Video Workshop, HongKong:China, 2010:158-164.
    [20] Xu Zheng, Bo Yang, Yanwen Liu, et al.Blockiness Evaluation for Reducing Blocking Artifacts in Compressed Images[C]//2009 Digest of Technical Papers International Conference on Consumer Electronics, Las Vegas, NV:USA, 2009:1-2.
    [21] Qiwei Xu, Xiaoxiao Luo, Xiaobiao Jiang, Meng Zhao.Research on double fuzzy control strategy for parallel hybrid electric vehicle based on GA and DP optimisation[J].IET Electrical Systems in Transportation, 2018, 8(2):144-151
  • 期刊类型引用(1)

    1. 张泽月,罗俊波,杨芳,戢晓珊. 基于动态时间混合网络的在线视频去模糊研究. 信息技术. 2019(10): 94-98+103 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  117
  • HTML全文浏览量:  15
  • PDF下载量:  502
  • 被引次数: 1
出版历程
  • 收稿日期:  2018-09-17
  • 修回日期:  2018-11-13
  • 发布日期:  2019-01-24

目录

    /

    返回文章
    返回