利用相位时频掩蔽的麦克风阵列噪声消除方法

何礼, 周翊, 刘宏清

何礼, 周翊, 刘宏清. 利用相位时频掩蔽的麦克风阵列噪声消除方法[J]. 信号处理, 2018, 34(12): 1490-1498. DOI: 10.16798/j.issn.1003-0530.2018.12.010
引用本文: 何礼, 周翊, 刘宏清. 利用相位时频掩蔽的麦克风阵列噪声消除方法[J]. 信号处理, 2018, 34(12): 1490-1498. DOI: 10.16798/j.issn.1003-0530.2018.12.010
HE Li, ZHOU Yi, LIU Hong-qing. Microphone Array Noise Cancellation Method Using Phase Time-frequency Masking[J]. JOURNAL OF SIGNAL PROCESSING, 2018, 34(12): 1490-1498. DOI: 10.16798/j.issn.1003-0530.2018.12.010
Citation: HE Li, ZHOU Yi, LIU Hong-qing. Microphone Array Noise Cancellation Method Using Phase Time-frequency Masking[J]. JOURNAL OF SIGNAL PROCESSING, 2018, 34(12): 1490-1498. DOI: 10.16798/j.issn.1003-0530.2018.12.010

利用相位时频掩蔽的麦克风阵列噪声消除方法

基金项目: 国家自然科学基金项目(61501072);重庆市科委自然科学基金项目(cstc2015jcyjA40027)
详细信息
  • 中图分类号: TN912.3

Microphone Array Noise Cancellation Method Using Phase Time-frequency Masking

  • 摘要: 本文提出了一种在干扰声源和背景噪声存在条件下麦克风阵列噪声消除的方法。麦克风阵列通过波束形成增强由导向矢量所指定方向的目标声源来抑制背景噪声。然而,现有的波束形成算法在干扰声源存在的情况下,无法进行准确的导向矢量估计。为此,本文提出一种基于音频信号互相关功率谱相位的麦克风阵列噪声消除方法。首先通过音频信号的相位时频掩码估计导向矢量,并对其进行波束形成,从而有效抑制干扰声源和背景噪声;然后利用语音存在概率,采用最大似然的方法估计波束形成后信号中残留的干扰噪声功率谱密度,对其进行后处理,进一步抑制残留干扰和噪声。实验结果表明在干扰声源和背景噪声存在的条件下,所提方法有效地实现了麦克风阵列噪声消除,且各种性能指标优于基线方法。
    Abstract: A noise cancellation method is studied for microphone array under the interfering sound source and background noise. The microphone array suppresses background noise by reinforcing the target sound source in the direction specified by the steering vector by beamforming. However, the present beamforming algorithms cannot accurately estimate the steering vector when interfering sound source presents. Therefore, this paper presents a noise cancellation method using the phase of audio signal cross-correlation power spectrum based on the microphone array. Firstly, the proposed method estimates the steering vector by the phase time-frequency mask of the audio signal and carries out the beamforming, so as to effectively suppress the interference sound source and background noise. Then the speech presence probability is calculated to estimate residual interference and noise power spectral density using maximum likelihood method and employed on the post-beamforming signal to further suppress residual interference and noise. The experimental results demonstrate that under the interfering sound source and background noise, the proposed microphone array method can effectively suppress noise, which is superior to the baseline methods.
  • [1] Sharon Gannot, Emmanuel Vincent, Shmulik Markovich-Golan, et al,. A consolidated perspective on multimicrophone speech enhancement and source separation [J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(4):692–730.
    [2] I. A. McCowan and H. Bourlard. Microphone array post-filter based on noise field coherence [J]. IEEE Transactions on Speech and Audio Processing, 2003, 11(6): 709–716.
    [3] S. Lefkimmiatis and P. Maragos. A generalized estimation approach for linear and nonlinear microphone array post-filters [J]. Speech Communication, 2007, 49(7):657–666.
    [4] A. Brutti, A. Tsiami, A. Katsamanis, et al, A Phase-Based Time Frequency masking for multi-channel speech enhancement in domestic environments [C]//proceedings of INTERSPEECH, 2016:2875-2879.
    [5] S. Doclo and M. Moonen. Design of far-field and near-field broadband beamformers using eigenfilters [J]. Signal Processing, 2003, 83(12): 2641-2673.
    [6] K. U. Simmer, J. Bitzer, and C. Marro, Microphone Arrays: Signal Processing Techniques and Applications. [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, ch. Post-Filtering Techniques.
    [7] T. Higuchi, N. Ito, T. Yoshioka, et al, “Robust mvdr beamforming using time-frequency masks for online/offline asr in noise,” [C] // in ICASSP, 2016.
    [8] A. Karbasi and A. Sugiyama. A new DOA estimation method using a circular microphone array [C] // in Proceedings of the European Signal Processing Conference (EUSIPCO) , 2007, pp. 778–782
    [9] I. Cohen. Noise spectrum estimation in adverse environments: Improved minima controlled recursive averaging, [J]. IEEE Trans. Speech Audio Process, 2003, 11(5): 466–475.
    [10] U. Kjems and J. Jensen. Maximum likelihood based noise covariance matrix estimation for multi-microphone speech enhancement [C] // in Proc. EUSIPCO, 2012, pp. 295-299.
    [11] E. Vincent, S. Watanabe, A. A. Nugraha, et al ,“An analysis of environment, microphone and data simulation mismatches in robust speech recognition,” [J]. Computer Speech and Language, 2017, 46(8):535-557.
    [12] Yi H,Loizou P C.Evaluation of objective quality measures for speech enhancement [J].IEEE Transactions on Audio,Speech,and Language Processing,2008,16(1) : 229-238.
    [13] V. Emiya, E. Vincent, N. Harlander, et al, Subjective and objective quality assessment of audio source separation [J]. IEEE Trans. Audio, Speech, Language Process, 2011, 19(7): 2046–2057.
  • 期刊类型引用(4)

    1. 于博文,曾庆宁. 基于差分阵列和时频掩蔽的语音增强算法. 计算机仿真. 2024(05): 366-371 . 百度学术
    2. 周静,鲍长春,张旭. 基于聚焦信号子空间估计导向矢量的干扰声源抑制方法. 电子学报. 2023(01): 76-85 . 百度学术
    3. 赵小燕,陈书文,周琳. 基于频率信噪比加权的麦克风阵列声源定位算法. 信号处理. 2020(03): 449-456 . 本站查看
    4. 石佳韵,陈华伟. 一阶指向可调差分阵列的前后向比分析与优化设计. 声学学报. 2020(05): 683-695 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  114
  • HTML全文浏览量:  13
  • PDF下载量:  733
  • 被引次数: 16
出版历程
  • 收稿日期:  2018-07-12
  • 修回日期:  2018-08-26
  • 发布日期:  2018-12-24

目录

    /

    返回文章
    返回