非平稳信道衰落FPGA实时模拟方法

李浩, 朱秋明, 陈应兵, 陈小敏, 杨志强

李浩, 朱秋明, 陈应兵, 陈小敏, 杨志强. 非平稳信道衰落FPGA实时模拟方法[J]. 信号处理, 2018, 34(3): 368-375. DOI: 10.16798/j.issn.1003-0530.2018.03.014
引用本文: 李浩, 朱秋明, 陈应兵, 陈小敏, 杨志强. 非平稳信道衰落FPGA实时模拟方法[J]. 信号处理, 2018, 34(3): 368-375. DOI: 10.16798/j.issn.1003-0530.2018.03.014
LI Hao, ZHU Qiu-ming, CHEN Ying-bing, CHEN Xiao-min, YANG Zhi-qiang. A Real-time FPGA-based Emulation Method for No-Stationary Channel Fading[J]. JOURNAL OF SIGNAL PROCESSING, 2018, 34(3): 368-375. DOI: 10.16798/j.issn.1003-0530.2018.03.014
Citation: LI Hao, ZHU Qiu-ming, CHEN Ying-bing, CHEN Xiao-min, YANG Zhi-qiang. A Real-time FPGA-based Emulation Method for No-Stationary Channel Fading[J]. JOURNAL OF SIGNAL PROCESSING, 2018, 34(3): 368-375. DOI: 10.16798/j.issn.1003-0530.2018.03.014

非平稳信道衰落FPGA实时模拟方法

基金项目: 国家重大科学仪器设备开发专项(2013YQ200607);江苏省博士后基金资助(1601017C);中央高校基本科研业务费青年科技创新基金(NS2015046, NS2016044);江苏省物联网与控制技术重点实验室基金(NJ20160027)资助
详细信息
  • 中图分类号: TN98

A Real-time FPGA-based Emulation Method for No-Stationary Channel Fading

  • 摘要: 针对由于收发端的高速移动导致信道衰落呈现的非平稳特性,提出了一种基于线性调频信号叠加的非平稳信道衰落产生方法,并对输出信道衰落的幅值分布和平均增益进行了详细分析,据此设计了基于FPGA硬件平台的非平稳信道衰落模拟器。硬件实测结果表明,该模拟器输出信道衰落分布、自相关函数和多普勒功率谱等均与理论结果非常吻合,可应用于针对非平稳散射环境下的下一代无线通信系统性能测试和验证。
    Abstract: Due to high-speed movements of the transmitter and receiver, propagation channels have shown non-stationary characteristics. In this paper, based on the sum of linear-frequency-modulation signals (SoLFM) method, a new generation method for non-stationary channel fading is proposed. Meanwhile, theorical expresssions of statistical properties, i.e., time-variant probability density function (PDF) and the average gain of channel are derived and analyzed. On this basis, the proposed method is implemented on a Xilinx FPGA hardware platform. The time-variant PDF, autocorrelation function (ACF) and Doppler power spectrum (DPSD) of the emulator are also measured. Hardware measurements have shown that the output statistical properties are consistent well with the theoretical ones, which can be used for real-time simulation of non-stationary channel fading in laboratory environment
  • [1] 邵晖. 高性能信道模拟器设计与应用浅析[J]. 国外电子测量技术,2017,36(3):4-9.
    [2] Shao Hui. Design and Application of High Performance Channel Simulator[J]. Forrign Electronic Measurement Technology, 2017, 36(3):4-9. (in Chinese)
    [3] Series M. ITU-R M.2135-1 Guidelines for Evaluation of Radio Interface Technologies for IMT-Advanced[S]. Switzerland: Report ITU, 2009.
    [4] 3GPP TS36.101 V10.2.1 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and Reception(Release 10)[S]. 3GPP TS: 2011.
    [5] Jakes W C, Cox D C. Microwave Mobile Communications[M]. Piscataway NJ: Wiley-IEEE Press, 1994.
    [6] P?tzold M, Wang C X and Hogstad B O. Two New Sum-of-Sinusoids-Based Methods for the Efficient Generation of Multiple Uncorrelated Rayleigh Fading Waveforms[J]. IEEE Transactions on Wireless Communications, 2009, 8(6):3122-3131.
    [7] Gutierrez C A, P?tzold M and Sandoval A, et al. An Ergodic Sum-of-Cisoids Simulator for Multiple Uncorrelated Rayleigh Fading Channels Under Generalized Scattering Conditions[J]. IEEE Transactions on Vehicular Technology, 2012, 61(5):2375-2382.
    [8] Alimohammad A, Fard S F, Cockburn B F. Accurate multiple-input multiple-output fading channel simulator using a compact and high throughput reconfigurable architecture [J]. IET Communications, 2011, 5(6): 844-852.
    [9] Alimohammad A, Fard S F. A Compact Architecture for Simulation of Spatio-Temporally Correlated MIMO Fading Channels [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(4): 1280-1288.
    [10] Huang P, Du Y, Li Y. Stability Analysis and Hardware Resource Optimization in Channel Emulator Design [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(7): 1089-1100.
    [11] Castillo J V, Vela-Garcia L, Gutiérrez C A, et al. A reconfigurable hardware architecture for the simulation of Rayleigh fading channels under arbitrary scattering conditions [J]. AEU-International Journal of Electronics and Communications, 2015, 69(1): 1-13.
    [12] Ispas A, Ascheid G, Schneider C, et al. Analysis of local quasi-stationarity regions in an urban macrocell scenario[C]//Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st. IEEE, 2010: 1-5.
    [13] Ghazal A, Wang C X, Ai B, et al. A nonstationary wideband MIMO channel model for high-mobility intelligent transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 885-897.
    [14] Yuan Y, Wang C X, He Y, et al. 3D wideband non-stationary geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6883-6895.
    [15] Borhani A, Stüber G L, P?tzold M. A Random Trajectory Approach for the Development of Nonstationary Channel Models Capturing Different Scales of Fading[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 2-14.
    [16] Dahech W, P?tzold M, Gutierrez C A, et al. A Non-Stationary Mobile-to-Mobile Channel Model Allowing for Velocity and Trajectory Variations of the Mobile Stations[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1987-2000.
    [17] Zhu Q, Liu X, Yin X, et al. A Novel Simulator of Nonstationary Random MIMO Channels in Rayleigh Fading Scenarios[J]. International Journal of Antennas and Propagation, 2016,2016(1):9-9.
    [18] 朱秋明,戴秀超,刘星麟,等. 复合衰落信道建模及模拟方法研究[J]. 信号处理,2015,1(1):59-65.
    [19] Zhu Qiu Ming, Dai Xiu Chao, Liu Xing Lin, et al. A simulation method for fading channel and emulator development[J]. Journal of Signal Processing, 2015, 1(1):59-65. (in Chinese)
    [20] Binghao C, Zhangdui Z, Bo A. Stationarity intervals of time-variant channel in high speed railway scenario[J]. China Communications, 2012, 9(8): 64-70.
    [21] Osseiran A, Hardouin E, Boldi M, et al. The Road to IMT-Advanced Communication Systems: State-of-the-Art and Innovation Areas Addressed by the WINNER+ Project[J]. IEEE Communications Magazine, 2009, 47(6): 38-47.
    [22] Qi X, Wu N, Wang H, et al. A factor graph-based iterative detection of faster-than-Nyquist signaling in the presence of phase noise and carrier frequency offset[J]. Digital Signal Processing, 2017, 63(1): 25-34.
    [23] P?tzold M, Borhani A. A non-stationary multipath fading channel model incorporating the effect of velocity variations of the mobile station[C]. 2014 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2014: 182-187.
    [24] Stoica P, Moses R L. Spectral Analysis of Signals[M]. Upper Saddle River, NJ: Pearson/Prentice Hall, 2005.
    [25] Alimohammad A, Fard S F. FPGA implementation of isotropic and nonisotropic fading channels[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(11): 796-800.
  • 期刊类型引用(1)

    1. 黄威,毛开,赵子坤,朱秋明,赵新宇,谢红. 可扩展多输入多输出信道高效模拟器研制. 电子测量与仪器学报. 2020(09): 1-8 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  128
  • HTML全文浏览量:  2
  • PDF下载量:  793
  • 被引次数: 3
出版历程
  • 收稿日期:  2017-06-25
  • 修回日期:  2017-11-01
  • 发布日期:  2018-03-24

目录

    /

    返回文章
    返回